
Journal of Computational Science 9 (2015) 137–142

Contents lists available at ScienceDirect

Journal of Computational Science

journa l homepage: www.e lsev ier .com/ locate / jocs

An invariant framework for conducting reproducible computational
science

Haiyan Mengb, Rupa Komminenia, Quan Phama, Robert Gardnera, Tanu Malika,∗,
Douglas Thainb

a Computation Institute, University of Chicago, Chicago, IL, USA
b Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN, USA

a r t i c l e i n f o

Article history:
Available online 18 April 2015

Keywords:
Preservation framework
Reproducible research
Virtualization
Container

a b s t r a c t

Computational reproducibility depends on the ability to not only isolate necessary and sufficient compu-
tational artifacts but also to preserve those artifacts for later re-execution. Both isolation and preservation
present challenges in large part due to the complexity of existing software and systems as well as
the implicit dependencies, resource distribution, and shifting compatibility of systems that result over
time—all of which conspire to break the reproducibility of an application. Sandboxing is a technique that
has been used extensively in OS environments in order to isolate computational artifacts. Several tools
were proposed recently that employ sandboxing as a mechanism to ensure reproducibility. However,
none of these tools preserve the sandboxed application for re-distribution to a larger scientific commu-
nity aspects that are equally crucial for ensuring reproducibility as sandboxing itself. In this paper, we
describe a framework of combined sandboxing and preservation, which is not only efficient and invari-
ant, but also practical for large-scale reproducibility. We present case studies of complex high-energy
physics applications and show how the framework can be useful for sandboxing, preserving, and dis-
tributing applications. We report on the completeness, performance, and efficiency of the framework,
and suggest possible standardization approaches.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Reproducibility is a cornerstone of the scientific
method [4]. Its ability to advance science underscores its
importance—reproducing by verifying and validating a scien-
tific result leads to improved understanding, thus increasing
possibilities of reusing or extending the result. Ensuring the repro-
ducibility of a scientific result, however, often entails detailed
documentation and specification of the involved scientific method.
Historically, text and proofs in a publication have achieved this
end. As computation pervades the sciences and transforms the
scientific method, simple text and static images are no longer suf-
ficient. In particular, apart from textual (and numeric) descriptions
describing the result, a reproducible result must also include sev-
eral computational artifacts, such as software, data, environment

∗ Corresponding author.
E-mail addresses: hmeng@nd.edu (H. Meng), rupa@uchicago.edu

(R. Kommineni), quanpt@uchicago.edu (Q. Pham), rwg@uchicago.edu (R. Gardner),
tanum@uchicago.edu (T. Malik), dthain@nd.edu (D. Thain).

variables, platform dependencies and the state of computation
that are involved in the adopted scientific method [14].

Virtualization has emerged as a promising technology to repro-
duce computational scientific results. One such approach is to
conduct the entire computation relating to a scientific result
within a virtual machine image, and then preserve and share
the resulting image. This way “VMI”s become an authoritative,
encapsulated, and executable record of the computation, espe-
cially computations whose results are destined for publication
and/or re-use. Virtual machine images, like files, can then be
shared [13]. The resulting image, however, may be too large
to share or distribute widely. An alternative light-weight form
of virtualization is to encapsulate only the application software
along with all its necessary dependencies into a self-contained
package. The encapsulation is achieved by operating system-level
sandboxing techniques that interpose application system calls
and copy the necessary dependencies (data, libraries, code, etc.)
into a package, making it lighter weight than a VMI [10]. Yet,
the package is not longer an executable record of the compu-
tation and still requires an accompanying operating system for
execution.

http://dx.doi.org/10.1016/j.jocs.2015.04.012
1877-7503/© 2015 Elsevier B.V. All rights reserved.

dx.doi.org/10.1016/j.jocs.2015.04.012
http://www.sciencedirect.com/science/journal/18777503
http://www.elsevier.com/locate/jocs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jocs.2015.04.012&domain=pdf
mailto:hmeng@nd.edu
mailto:rupa@uchicago.edu
mailto:quanpt@uchicago.edu
mailto:rwg@uchicago.edu
mailto:tanum@uchicago.edu
mailto:dthain@nd.edu
dx.doi.org/10.1016/j.jocs.2015.04.012


138 H. Meng et al. / Journal of Computational Science 9 (2015) 137–142

While both approaches provide mechanisms for encapsulating
the computations associated with a scientific result, neither form
of virtualization provides any guarantee that the included pieces
of software will indeed reproduce the associated scientific result.
In general, in the absence of reproducible policy guidelines, such
guarantees can be difficult to provide. Preserving the encapsulated
computations in such a way that they are always reproducible
will improve upon the guarantees. A preservation mechanism
can increase the ease of image or package installation, alter
dependencies implicit to computation as software components
evolve or become deprecated, and provide mechanisms for doc-
umentation that make computations easy to understand after the
fact.

The two approaches that address the preservation challenge
are as follows: one, the introduction of tools that help document
dependencies and provide software attribution within VMIs or
packages; and two, the use of software delivery mechanisms such
as centralized package management, Linux containers, and the
more recent Docker framework. We examined the first approach
previously in [17]. In this paper we examine the second approach.
We consider in particular the lightweight virtualization because
we believe together with more standardized software delivery
mechanisms, the two combined can address the reproducibility
challenge for a wide variety of scientific researchers. A package
created by those lightweight approaches encapsulates all the nec-
essary dependencies of an application, and can be used to repeat
the application through different sandbox mechanisms, including
Parrot [22], CDE [10], PTU [16], chroot, and Docker [3].

Of course our solution represents only one way to preserve
applications. Broadly, two different approaches to preserve appli-
cations have been adopted: force cleanliness or measure the mess.
The former forces users to specify the execution environment for
an application in a well-organized way. The latter causes end users
to construct the environment as desired, and the complexity of the
environment is measured in terms of its dependencies. Our objec-
tive here is to measure the mess as-is and then preserve it over time.

To conduct a thorough examination, we consider real-world
complex high energy physics (HEP) applications, independently
developed by two groups, that must be reproduced so that the
entire HEP community can benefit from the analysis. We describe
challenges faced in reproducing the applications, and we con-
sider the extent to which reproducibility requirements can be
satisfied with lightweight virtualization approaches and software
delivery mechanisms. We propose an invariant framework for com-
putational reproducibility that combines lightweight virtualization
with software delivery mechanisms for efficiently capturing,
invariantly preserving, and practically deploying applications. We
measure the performance overhead of lightweight virtualization
and software delivery approaches, and show how the preserved
packages can be distributed to allow reproduction and verification.

2. High energy physics applications

We study applications taken from two experiments of the CERN
Large Hadron Collider, namely the ATLAS experiment and the CMS
experiment. In LHC, the ATLAS and CMS experiments are dis-
tinct, developed independently by two entirely separate physics
communities. Consequently, their applications have very different
software distribution and data management frameworks, raising
the question of whether common reproducibility frameworks and
tools work across the two communities. One of the applications
of the ATLAS experiment is the Athena application, which is a
general purpose processing framework including algorithms for
event reconstruction and data reduction [6]. The CMS experiment is
conducted through an application termed TauRoast, which searches

Fig. 1. Inputs to Tau Roast.

for specific cases where the Higgs boson decays to two tau leptons
[8].

Code and data in TauRoast are available through five different
networked filesystems which are mounted locally, an HDFS cluster
for the CMS dataset, some configuration files were stored on CVMFS
[2], and a variety of software tools were on an NFS, PanFS and AFS
systems. In addition, code may exist in version control systems such
as Git, CVS, and CMS Software Distribution (CMSSW).

Data that is input to TauRoast is obtained by reducing it through
a pipeline, as shown in Fig. 1. Consequently, the real input data may
vary depending upon the topic of research. Similarly the software
may name many possible components but the used components
are smaller than the named ones.

Data in Athena is obtained through an external Dropbox-like
system called the FaxBox, but does not pass through any reduction
steps. Code is obtained through CVMFS, which provides the analysis
routines. The invoked configuration will change, however, depend-
ing upon the input data code. Thus in Athena the used code and
configuration are dynamic depending upon input data, whereas in
TauRoast the code and data are static, but the amount of data and
code to include changes depending on the science involved.

3. Challenges in reproducing HEP applications

The application specifications of TauRoast and Athena were pro-
vided to us from the CMS and ATLAS Collaborations respectively
in the form of email describing in prose how to obtain the source,
build the program, and run it correctly on a specific platform type
available at our home institutions. There were no explicit guaran-
tees that it would run on alternative platforms. This minimal level
of documentation about software is routine in the scientific world.
Below we describe the challenges faced when capturing applica-
tion details in reproducible form and then preserving them for
subsequent reuse.

• Identifying all dependencies. Due to the distributed, collabo-
rative nature of HEP software development, these applications
depend on a large number of external and local software com-
ponents. External dependencies are often explicitly stated, such
as when the application makes connections to Github resources
or CVS servers for downloading source files. When the applica-
tion has initiated execution then implicit network connections
may be present that require identification of dependencies on
all machines where execution takes place. Implicit local depend-
encies can arise as a result of mounted filesystems. In TauRoast,
the application data and code is distributed on five networked
filesystems, and in Athena on two networked filesystems. Since
these filesystems appear local to the application machine, it is
important to check and capture mounted filesystems and their
respective mount points.



Download English Version:

https://daneshyari.com/en/article/6874615

Download Persian Version:

https://daneshyari.com/article/6874615

Daneshyari.com

https://daneshyari.com/en/article/6874615
https://daneshyari.com/article/6874615
https://daneshyari.com

