
Journal of Computational Science 9 (2015) 156–162

Contents lists available at ScienceDirect

Journal of Computational Science

journa l homepage: www.e lsev ier .com/ locate / jocs

Evolving Fortran types with inferred units-of-measure

Dominic Orcharda,∗, Andrew Riceb, Oleg Oshmyanb

a Department of Computing, Imperial College London, United Kingdom
b Computer Laboratory, University of Cambridge, United Kingdom

a r t i c l e i n f o

Article history:
Available online 18 April 2015

Keywords:
Units-of-measure
Dimension typing
Type systems
Verification
Code base evolution
Fortran
Language design

a b s t r a c t

Dimensional analysis is a well known technique for checking the consistency of equations involving
physical quantities, constituting a kind of type system. Various type systems for dimensional analysis,
and its refinement to units-of-measure, have been proposed. In this paper, we detail the design and
implementation of a units-of-measure system for Fortran, provided as a pre-processor. Our system is
designed to aid adding units to existing code base: units may be polymorphic and can be inferred. Fur-
thermore, we introduce a technique for reporting to the user a set of critical variables which should be
explicitly annotated with units to get the maximum amount of unit information with the minimal num-
ber of explicit declarations. This aids adoption of our type system to existing code bases, of which there
are many in computational science projects.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Type systems are one of the most popular static techniques for
recognizing and rejecting large classes of programming error. A
common analogy for types is of physical quantities (e.g., in [2]),
where type checking excludes, for example, the non-sensical addi-
tion of non-comparable quantities such as adding 3 m to 2 J;
they have different dimensions (length vs. energy) and different
units (metres vs. joules). This analogy between types and dimen-
sions/units goes deeper. The approach of dimensional analysis
checks the consistency of formulae involving physical quantities,
acting as a kind of type system (performed by hand, long before
computers). Various automatic type-system-like approaches have
been proposed for including dimensional analysis in programming
languages (e.g. [10] is a famous paper detailing one such approach,
which also cites much of the relevant history of other systems).

Failing to ensure that the dimensions (or units) of values are
correctly matched can be disastrous. An extreme example of this
is the uncaught unit mismatch which led to the destruction of the
Mars Climate Orbiter [20]. Many programs in computational sci-
ence are also sensitive to this kind of error since they focus on
modelling the physical world. The software for the Mars Orbiter had
orders of magnitude more resources devoted to the robustness and
correctness of code than is possible in normal scientific research

∗ Corresponding author.
E-mail addresses: d.orchard@imperial.ac.uk (D. Orchard),

andrew.rice@cl.cam.ac.uk (A. Rice).

circumstances. It therefore seems inevitable that these errors are
likely in computational science too.

The importance of units is often directly acknowledged in source
code. We have seen source files carefully commented with the
units and dimensions of each variable and parameter. We have also
watched programmers trying to use this information: a process of
scrolling up and down, repeatedly referring to the unit specifica-
tion of each parameter. Incorporating units into the type system
would move the onus of responsibility from the programmer to
the compiler.

A recent ISO standards proposal (N1969) for Fortran introduces
a units-of-measure system which follows Fortran’s tradition of
explicitness [7]. Every variable declaration must have an explicit
unit declaration and every composite unit (e.g., metres times
seconds) must itself be explicitly declared. This imposes the extra
burden of annotating variables directly on the programmer. As an
example, we studied two medium-sized models (roughly 10,000
lines of code each) and found roughly a 1:10 ratio between vari-
able declarations and lines of code. Thus, adding explicit units of
measure to a project with 10,000 lines of code means manually
adding 1000 unit declarations. This is prohibitively large.

In this paper, we show how the bulk of this work can be done
automatically based on a few manual annotations. This approach
might be used to automatically add N1969 annotations to a code-
base or in an Integrated Development Environment (IDE) to inform
the programmer of the units as they code. Our approach is to add
a validation step prior to compilation: our tool takes annotated
Fortran code and validates the units. The annotations can then be
automatically removed and the program compiled as normal using
the preferred compiler.

http://dx.doi.org/10.1016/j.jocs.2015.04.018
1877-7503/© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

dx.doi.org/10.1016/j.jocs.2015.04.018
http://www.sciencedirect.com/science/journal/18777503
http://www.elsevier.com/locate/jocs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jocs.2015.04.018&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
mailto:d.orchard@imperial.ac.uk
mailto:andrew.rice@cl.cam.ac.uk
dx.doi.org/10.1016/j.jocs.2015.04.018
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


D. Orchard et al. / Journal of Computational Science 9 (2015) 156–162 157

We describe a lightweight extension to Fortran’s type system for
polymorphic units-of-measure (Section 2) and explain the infer-
ence process which reduces the amount of explicit declaration
required (Section 3). By default, it is always possible to infer all
variables as “unitless” if no explicit unit declarations are given.
However, this is not useful. In order to minimise the task of adding
explicit unit declarations, our system can automatically identify a
minimal set of variables for which an explicit annotation is needed
(Section 4). We evaluate our approach on a number of small but
useful examples Section 5) and show we can reduce the burden of
explicit annotation by roughly 80%. We compare our approach with
existing proposals and argue that our system is more lightweight
and requires less programmer effort (Section 6).

The general idea and approach of inferring units-of-measure is
already well established. Instead the contribution of this paper is
in the application of this technique to Fortran and existing code
base, helping to evolve the language and co-evolve existing code via
inference and our method for identifying which variables require
manual annotation.

The type checker, inference, and analysis described here are
implemented as part of the CamFort project, a research infrastruc-
ture for the analysis, transformation, refactoring, and extension of
Fortran [14]. CamFort is open-source and available online.1 Our
long term interest is in how software engineering interacts with the
scientific method and how techniques from programming language
theory and design can be beneficially applied [15]. The present
paper is a contribution in this space.

Example. Fig. 1 shows a simple Fortran program which computes
(one-dimensional) velocity (v) and speed (s) from a given distance
(x) and time (t). As a use case of our tool, the programmer initially
runs the analysis phase of CamFort (Fig. 1(a)) and is told that only
x and t need be annotated. Fig. 1(b) shows the syntax used by the
programmer to add m (metres) and s (seconds) units respectively
to the distance and time variables. CamFort then infers the units
of v and s automatically from the program itself and inserts those
into the code (without disturbing any formatting/comments).

2. Units-of-measure for Fortran

Unit attributes In our extensions, units-of-measure can be
explicitly declared for variables similarly to types and other
attributes of variables. Our extension adds the attribute unit,
which is shown in the above example (Fig. 1). The unit attribute
takes a single unit expression as an argument, the syntax of which
is defined by the following grammar (where the right-hand side
shows an example of the syntax):

(grammar) (description) (example)

name ::= [a − zA − Z] + unitnames; regularexpression m, metres. . .

R ::= Z integerconstants 1, 2, −2. . .

| Z/Z fractionoftwointegers 2/3, 4/2. . .

u, v ::= � empty— equivalenttounitless x

| 1 unitless unit(1) :: x

| name unitidentifier unit(m) :: x

| u ∗ ∗(R) rationalpower unit(s ∗ ∗(1/2)) :: x

| u v product unit(ms ∗ ∗2) :: x

| u/v division unit(m/s ∗ ∗3) :: x

Identifiers for unit names are not themselves explicitly declared.
For example, a unit attribute unit(m) implicitly introduces the unit
named m to the program, where any other uses of m as a unit in the
program denote the same unit.

1 http://www.cl.cam.ac.uk/research/dtg/naps.

Fig. 1. Example.

A unit attribute can be given to any type, not just numerical
types (this differs from others, e.g., [10]). In practice, numerical
types tend to benefit the most from unit attributes, but there
are some situations where it is useful to ascribe units to non-
numerical types, e.g., to string representations of numerical values
or to booleans for grouping related control variables.

An empty unit expression is equivalent to a unitless specifica-
tion, i.e., unit() = unit(1). Any variable which does not have an
explicit unit declaration will have its unit inferred.

Unit declarations Named aliases for unit expressions can be
declared in the declarations part of a Fortran file with the following
syntax:

decls ::= . . . | unit :: name = u (namedalias) unit :: speed = m/s

During unit checking, any occurrences of a derived unit name
are replaced by their declared unit expression. Hence in the unit
checker, an alias is indistinguishable from its defining unit expres-
sion. A global check ensures that no named aliases conflict (e.g.,
redefine) each other.

Type system Fig. 2 describes the type system of CamFort in
a standard declarative and inductive way, defining the relation
� � F : u, where � is a map from program variables to their unit
and F is a Fortran expression of unit u. The type system definition
(and its implementation) extends the visible syntax of units with
some additional constructs: (1) function types (u1, . . ., un → v) i.e.,
the unit specification of a Fortran function with n formal parame-
ters (or dummy variables in Fortran parlance) of units u1 . . . un and
result unit v, (2) variable placeholders for units, written ˛ (3) uni-
versal quantification ∀˛ . u for unit polymorphism. Fig. 2 shows the
polymorphic unit types of some core Fortran intrinsic operators.
When a unit is associated with a value type (e.g., integer) we
write u[t] for a value type t as in rule (real-pow). The (int-pow)
and (rational-pow) rules raise their unit to the power provided by
a static constant.

Polymorphism in our unit system follows a similar approach
to that of types in the polymorphic �-calculus [18], though we
restrict universal quantification to the top-level of a unit expression
(i.e., not nested). The introduction of universal quantification (unit
generalisation) occurs only when a function is defined. The com-
plementary (spec) rule, specialises a universally quantified unit by
substituting a unit v for the variable ˛. By the form of the (app) rule,
a polymorphic function must be specialised first before it is applied.
For example:

(app)
(spec)[˛ �→ m] ��abs:∀˛.˛→˛

��abs:m→m (var) (x:m)∈�
��x:m

� � abs(x) : m

Unit polymorphism example A key part of our unit
type system is that it provides polymorphic unit support on
top of Fortran’s monomorphic type system. As an example,
Fig. 3(a) defines a square function without any unit annota-
tions. Under the typing scheme described in this section, then

http://www.cl.cam.ac.uk/research/dtg/naps
http://www.cl.cam.ac.uk/research/dtg/naps
http://www.cl.cam.ac.uk/research/dtg/naps
http://www.cl.cam.ac.uk/research/dtg/naps
http://www.cl.cam.ac.uk/research/dtg/naps
http://www.cl.cam.ac.uk/research/dtg/naps
http://www.cl.cam.ac.uk/research/dtg/naps
http://www.cl.cam.ac.uk/research/dtg/naps
http://www.cl.cam.ac.uk/research/dtg/naps


Download English Version:

https://daneshyari.com/en/article/6874618

Download Persian Version:

https://daneshyari.com/article/6874618

Daneshyari.com

https://daneshyari.com/en/article/6874618
https://daneshyari.com/article/6874618
https://daneshyari.com

