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We study the approximability of (Finite-)Valued Constraint Satisfaction Problems (VCSPs) 
with a fixed finite constraint language � consisting of finitary functions on a fixed finite 
domain. Ene et al. have shown that, under a mild technical condition, the basic LP 
relaxation is optimal for constant-factor approximation for VCSP(�) unless the Unique 
Games Conjecture fails. Using the algebraic approach to the CSP, we give new natural 
algebraic conditions for the finiteness of the integrality gap for the basic LP relaxation 
of VCSP(�) and show how this leads to efficient constant-factor approximation algorithms 
for several examples that cover all previously known cases that are NP-hard to solve to 
optimality but admit constant-factor approximation. Finally, we show that the absence of 
another algebraic condition leads to NP-hardness of constant-factor approximation. Thus, 
our results indicate where the boundary of constant-factor approximability for VCSPs lies.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

The constraint satisfaction problem (CSP) provides a framework in which it is possible to express, in a natural way, many 
combinatorial problems encountered in computer science and AI [1–3]. Standard examples of CSPs include satisfiability of 
propositional formulas, graph coloring problems, and systems of linear equations. An instance of the CSP consists of a set of 
variables, a (not necessarily Boolean) domain of labels, and a set of constraints on combinations of values that can be taken 
by certain subsets of variables. The aim is then to find an assignment of labels to the variables that, in the decision version, 
satisfies all the constraints or, in the optimization version, maximizes (minimizes) the number of satisfied (unsatisfied, 
respectively) constraints.

Since the CSP is NP-hard in full generality, a major line of research in CSP tries to identify special cases that have 
desirable algorithmic properties (see, e.g. [1–3]), the primary motivation being the general picture rather than specific ap-
plications. The two main ingredients of a constraint are: (a) variables to which it is applied, and (b) relation specifying the 
allowed combinations of labels. Therefore, the main types of restrictions on CSP are: (a) structural where the hypergraph 
formed by sets of variables appearing in individual constraints is restricted [4,5], and (b) language-based where the con-
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straint language �, i.e. the set of relations that can appear in constraints, is fixed (see, e.g. [6,1,7,3]); the corresponding 
decision/maximization/minimization problems are denoted by CSP(�), Max CSP(�), and Min CSP(�), respectively. The ulti-
mate sort of results in this direction are dichotomy results, pioneered by [8], which completely characterize the restrictions 
with a given desirable property modulo some complexity-theoretic assumptions. The language-based direction is consid-
erably more active than the structural one, and there are many (partial and full) language-based complexity classification 
results, e.g. [9–15], but many questions are still open.

Problems Max CSP and Min CSP can be generalized by replacing relations (that specify allowed combinations of labels) 
with functions that specify a value in [0, 1] (measuring the desirability or the cost, respectively) for each tuple of labels. 
The goal would then be to find an assignment of labels that maximizes the total desirability (minimizes the total cost, re-
spectively). The maximization version was studied in [16,17] under the name of Generalized CSP, or GCSP, (in fact, functions 
there can take values in [−1, 1]), while the minimization version is known as (Finite-)Valued CSP [14]. In General-Valued 
CSP, functions can also take the infinite value to indicate infeasible tuples [18,19,13], but we will not consider this case 
in this paper. In this paper we write VCSP to mean finite-valued CSP. We note that [20] write Min CSP to mean what we 
call VCSP in this paper. Naturally, both GCSP and VCSP can be parameterized by constraint languages �, now consisting of 
functions instead of relations.

The CSP has always played an important role in mapping the landscape of approximability of NP-hard optimization 
problems, see e.g. surveys [21,22]. For example, the famous PCP theorem has an equivalent reformulation in terms of 
inapproximability of a certain Max CSP(�), see [23]; moreover, Dinur’s combinatorial proof of this theorem [24] deals entirely 
with CSPs. The first optimal inapproximability results [25] by Håstad were about problems Max CSP(�), and they led to 
the study of a new hardness notion called approximation resistance (see, e.g. [26–28]). The approximability of Boolean 
CSPs has been thoroughly investigated (see, e.g. [29,1,30,31,25,27,21,32]). Much work around the Unique Games Conjecture 
(UGC) directly concerns CSPs [21]. This conjecture states that, for any ε > 0, there is a large enough number k = k(ε)

such that it NP-hard to tell ε-satisfiable from (1 − ε)-satisfiable instances of CSP(�k), where �k consists of all graphs of 
bijections on a k-element set. Many approximation algorithms for classical optimization problems have been shown optimal 
assuming the UGC [21,32]. Raghavendra proved [17] that one SDP-based algorithm provides optimal approximation for all 
problems GCSP(�) assuming the UGC. In this paper, we investigate problems VCSP(�) and Min CSP(�) on an arbitrary finite 
domain that belong to APX, i.e. admit a (polynomial-time) constant-factor approximation algorithm, proving some results 
that strongly indicate where the boundary of this property lies.

Related work. Note that each problem Max CSP(�) trivially admits a constant-factor approximation algorithm because a 
random assignment of values to the variables is guaranteed to satisfy a constant fraction of constraints; this can be deran-
domized by the standard method of conditional probabilities. The same also holds for GCSP. Clearly, for Min CSP(�) to admit 
a constant-factor approximation algorithm, CSP(�) must be polynomial-time solvable.

The approximability of problems VCSP(�) has been studied, mostly for Min CSPs in the Boolean case (i.e., with do-
main {0, 1}, such CSPs are sometimes called “generalized satisfiability” problems), see [29,1]. We need a few concepts from 
propositional logic. A clause is Horn if it contains at most one positive literal, and negative if it contains only negative 
literals. Let k -HORN be the constraint language over the Boolean domain that contains all Horn clauses with at most k
variables. For k ≥ 2, let k -IHBS be the subset of k -HORN that consists of all clauses that are negative or have at most 
2 variables. It is known that, for each k ≥ 2, Min CSP(k -IHBS) belongs to APX [1], and they (and the corresponding dual 
Horn problems) are essentially the only such Boolean Min CSPs unless the UGC fails [33]. For Min CSP(2 -HORN), which 
is identical to Min CSP(2 -IHBS), a 2-approximation (LP-based) algorithm is described in [31], which is optimal assum-
ing the UGC, whereas it is NP-hard to constant-factor approximate Min CSP(3 -HORN) [30]. If �=2 is the Boolean relation 
{(0, 1), (1, 0)}, then Min CSP({�=2}) is known as MinUnCut. Min CSP(�) where � consists of 2-clauses is known as Min 2CNF
Deletion. The best currently known approximation algorithms for MinUnCut and Min 2CNF Deletion have approximation 
ratio O (

√
log n) [29], and it follows from [32] that neither problem belongs to APX unless the UGC is false. The UGC is 

known to imply the optimality of the basic LP relaxation for any VCSP(�) such that � contains the (characteristic function 
of the) equality relation [20], extending the line of similar results for natural LP and SDP relaxations for various optimization 
CSPs [34,35,17].

An approximation algorithm for any VCSP(�) was also given in the 2013 conference version of [20] (that was claimed to 
match the LP integrality gap), but its analysis was later found to be faulty and this part was retracted in the 2015 update 
of [20]. The SDP rounding algorithm for GCSPs from [36] is discussed in detail in the book [37], where it is pointed out that 
the same algorithm does not work for VCSPs.

Constant-factor approximation algorithms for Min CSP are closely related to certain robust algorithms for CSP that 
attracted much attention recently [10,33,38,39]. Call an algorithm for CSP(�) robust if, for every ε > 0 and every 
(1 − ε)-satisfiable instance of CSP(�) (i.e. at most an ε-fraction of constraints can be removed to make the instance satis-
fiable), it outputs a (1 − f (ε))-satisfying assignment (i.e. that fails to satisfy at most a f (ε)-fraction of constraints) where 
f is a function such that f (ε) → 0 as ε → 0 and f (0) = 0. CSPs admitting a robust algorithm (with some function f ) were 
completely characterized in [10]; when such an algorithm exists, one can always choose f (ε) = O (log log (1/ε)/ log (1/ε))

for the randomized algorithm and f (ε) = O (log log (1/ε)/
√

log (1/ε)) for the derandomized version. A robust algorithm is 
said to have linear loss if the function f can be chosen so that f (ε) = O (ε). The problem of characterizing CSPs that admit a 
robust algorithm with linear loss was posed in [33]. It is easy to see that, for any �, CSP(�) admits a robust algorithm with 
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