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Simon’s problem is one of the most important problems demonstrating the power of 
quantum computers. In this paper, we propose another exact quantum algorithm for 
solving Simon’s problem with O (n) queries, which is simple, concrete and does not rely 
on special query oracles. Our algorithm combines Simon’s algorithm with the quantum 
amplitude amplification technique to ensure its determinism. In particular, we show that 
Simon’s problem can be solved by a classical deterministic algorithm with O (

√
2n) queries 

(as we are aware, there were no classical deterministic algorithms for solving Simon’s 
problem with O (

√
2n) queries). Combining some previous results, we obtain the optimal 

separation in exact query complexities for Simon’s problem: �(n) versus �(
√

2n).
© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Query complexity has been very useful to study the relative power of quantum computation and classical computation 
[7,15]. According to their output, query algorithms can be studied either in the bounded-error setting (the algorithm gives 
the correct result with probability at least 2/3) or in the exact setting (the algorithm gives the correct result with certainty). 
For the bounded-error case, there are many algorithms achieving large separation in query complexities (for example, [1,9]), 
and some of them have exponential or even larger speedups for computing partial functions ([17] includes a more detailed 
list), though it is not known whether the separation is optimal for some of them.

As for exact query complexity, the result is more limited. For total functions, Ambainis [2] gave the first superlinear 
speedup example, and the best known separation is Õ (n) versus �(n2) [3], which computes a variant of functions intro-
duced in [10]. In fact, it has been proved that the quantum query algorithms can only achieve polynomial speedup with 
degree at most 3 [13]. However, for computing partial functions, there can be an exponential or larger separation, and 
the first example is the well-known Deutsch–Jozsa problem [8], whose separation is 1 versus n/2 + 1. In [17], the optimal 
separation for a generalized Deutsch–Jozsa problem was given, which is over exponential one as well.

Simon’s problem [18] is a famous computational problem that achieves exponential separation in query complexities. In 
the bounded-error setting, Simon gave an elegant quantum algorithm which solves the problem with O (n) queries and the 
physical realization has demonstrated its efficiency [19]. The �(n) lower bound was also proved in [11] using polynomial 
method [4]. On the other hand, the classical probabilistic query complexity for this problem is �(

√
2n) [20], which shows 

that the �(n) versus �(
√

2n) separation is an optimal one.
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As for the exact query complexities of Simon’s problem, Brassard and Høyer [5] combined Simon’s algorithm with two 
post-processing subroutines to ensure that their algorithm solves the problem exactly, which also requires O (n) queries. 
However, their algorithm is quite complicated and involved. Mihara and Sung [14] proposed a simpler exact algorithm, 
but their algorithm relies on some non-standard query oracles and they did not show the construction of their oracles. 
Moreover, the �(n) quantum query lower bound is a direct corollary of previous bounded-error lower bound result. For the 
classical case, the �(

√
2n) lower bound can be easily obtained (Theorem 6). As we are aware, it was not known (until this 

point) whether this lower bound is a tight one, so it was not known (until this point) whether the O (n) versus �(
√

2n) is 
optimal either.

In this paper, we propose a new exact quantum algorithm for solving Simon’s problem also with O (n) queries, which is 
much simpler and more concrete than Brassard and Høyer’s algorithm [5] and does not rely on some non-standard query 
oracles as Mihara and Sung’s construction [14]. Our algorithm directly combines Simon’s algorithm with the quantum am-
plitude amplification technique [6] to ensure we get an exact result. Then, we design a classical deterministic algorithm for 
solving Simon’s problem with O (

√
2n) queries, which relies on some crucial insights about the bitwise exclusive-or opera-

tion results of the pairs of strings which are queried by the algorithm. Thus, we prove the �(
√

2n) classical deterministic 
query complexity for Simon’s problem. With previously established results on the exact quantum query complexity, we can 
get the optimal separation in the exact query complexities for Simon’s problem: �(n) versus �(

√
2n).

The remainder of the paper is organized as follows. In Section 2, we review Simon’s problem, describe the Simon’s 
algorithm [18] with a different way, and present some notions and notations that will be used hereinafter. Then in Section 3, 
we discuss the quantum query complexity of Simon’s problem and give a new exact quantum algorithm to solve Simon’s 
problem also with O (n) queries. After that, in Section 4, we discuss the classical query complexity of Simon’s problem 
and design a classical deterministic algorithm for solving Simon’s problem with O (

√
2n) queries. Finally, conclusions are 

summarized in Section 5.

2. Preliminaries

In the interest of readability, this section serves to introduce some basic notions concerning quantum computation and 
Simon’s problem.

2.1. Basic introduction to quantum computation

First, let us introduce some basic terminology of quantum computation. For the details, we can refer to [16].
In quantum computers, the minimal unit of information is called a quantum bit or a qubit. As it is known, the classical bit 

can be one of the two states – either 0 or 1, but a qubit can be a superposition of the two states, written |ψ〉 = α |0〉 + β |1〉. 
The numbers α and β are complex numbers satisfying |α|2 + |β|2 = 1. Put another way, the state of a qubit is a vector in 
two-dimensional complex vector space. |0〉 and |1〉 are known as computational basis states, and α and β are the amplitudes
of the relevant computational basis states.

There are two things we can do with a qubit: measure it or let it evolve unitarily without measurements. We deal with 
measurements first. The most straightforward one is the measurement in the computational basis. In this way, the measured 
qubit is either |0〉 or |1〉. By physical restriction, we do not know the measurement result in advance, but we can ensure 
that we will see |0〉 with probability |α|2 and |1〉 with probability |β|2. Of course, there exist other more general kinds of 
measurement, but throughout this paper, we only use the measurement in the computational basis.

Instead of measuring |ψ〉, we can also apply some operations to it. By a complex matrix U , a state |ψ〉 can be trans-
formed to a state |ϕ〉 = U |ψ〉. According to the principle of quantum mechanics [16], the transformation must be a unitary
transformation, so U must be a unitary matrix.

The notions and notations above describe a system of one qubit, similarly we can think of systems of multiple qubits. 
A register of n qubits has 2n basis states, each of form |x〉 = |x1, x2, · · · , xn〉 = |x1〉 ⊗ |x2〉 ⊗ · · · ⊗ |xn〉, where ⊗ is the 
tensor product operation and x ∈ {0, 1}n . The state of the n qubit registers can be the superposition of these basis states. 
The measurements and state transformations of multiple qubits are similar to the one qubit case as well. Note that we 
are also using the tensor product operation to couple the transformation operators on different parts of the register, i.e. 
(A ⊗ B)(|x〉 ⊗ |y〉) = A |x〉 ⊗ B |y〉.

2.2. Problem description

Now, let us recall Simon’s problem. Let n ≥ 1 be any positive integer and let (⊕) : {0, 1}n × {0, 1}n → {0, 1}n denote the 
bitwise exclusive-or operation. Suppose we are given a function f : {0, 1}n → {0, 1}m with m ≥ n, and we are promised that 
there exists an s ∈ {0, 1}n \ {0n} such that for all x, y ∈ {0, 1}n , f (x) = f (y) if and only if x = y or x = y ⊕ s, the aim is to 
compute s.

There exists an associated decision problem for Simon’s problem as well. Suppose that the given function f is either 
one-to-one, or satisfies the condition defined above. Then the purpose is to determine which of these conditions holds 
for f . Since any lower bound on this problem implies the same one on the original Simon’s problem, it would be useful for 
the lower bound proof in what follows.
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