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In the framework of distributed network computing, it is known that not all Turing-decidable 
predicates on labeled networks can be decided locally whenever the computing entities 
are Turing machines (TM). This holds even if nodes are running non-deterministic Turing 
machines (NTM). In contrast, we show that every Turing-decidable predicate on labeled 
networks can be decided locally if nodes are running alternating Turing machines (ATM). 
More specifically, we show that, for every such predicate, there is a local algorithm for 
ATMs, with at most two alternations, that decides whether the actual labeled network 
satisfies that predicate. To this aim, we define a hierarchy of classes of decision tasks, 
where the lowest level contains tasks solvable with TMs, the first level those solvable with 
NTMs, and the level k > 1 contains those tasks solvable with ATMs with k − 1 alternations. 
We characterize the entire hierarchy, and show that it collapses in the second level.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

1.1. Context and objective

In the framework of network computing, distributed decision is the ability to check the legality of network configurations 
using a distributed algorithm. This concern is of the utmost importance in the context of fault-tolerant distributed comput-
ing, where it is highly desirable that the nodes are able to collectively check the legality of their current configuration, which 
could have been altered by the corruption of variables due to failures. In this paper, we are interested in local distributed 
decision. More specifically, we consider the standard LOCAL model of computation in networks [15]. Nodes are assumed 
to be given distinct identities, and each node executes the same algorithm, which proceeds in synchronous rounds where 
all nodes start at the same time. In each round, every node sends messages to its neighbors, receives messages from its 
neighbors, and performs some individual computation. The model does not limit the amount of data sent in the messages, 
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neither does it limit the amount of computation that is performed by a node during a round. Indeed, the model places an 
emphasis on the number of rounds before every node can output, as a measure of locality. A local algorithm is a distributed 
algorithm A satisfying that there exists a constant t ≥ 0 such that A terminates in at most t rounds in all networks, for all 
inputs. The parameter t is called the radius of A. In other words, in every network G , and for all inputs to the nodes of G , 
every node executing A just needs to collect all information present in the t-ball around it in order to output, where the 
t-ball of u is the ball BG (u, t) = {v ∈ V (G) : dist(u, v) ≤ t}, where dist(u, v) denotes the length (i.e., number of edges) of a 
shortest path between u and v .

The objective of the paper is to determine what network properties can be decided locally, as a function of the individual 
computing power of the nodes.

Following the guidelines of [7], we define a configuration as a pair (G, x) where G = (V , E) is a connected simple undi-
rected graph, and x : V (G) → {0, 1}∗ is a function assigning an input x(u) to every node u ∈ V . A distributed language L is 
a set of configurations (we consider only Turing-decidable sets). A configuration (G, x) ∈ L is said to be legal w.r.t. L. The 
membership of a configuration in a distributed language is independent of the identity that may be assigned to the nodes 
in the LOCAL model. For instance, the set {(G, x) : ∃v ∈ V (G), id(v) = 1} is not considered as a distributed language.

The class LD is the set of all distributed languages that are locally decidable. That is, LD is the class of all distributed 
languages L for which there exists a local algorithm A satisfying that, for every configuration (G, x),

(G, x) ∈ L ⇐⇒ A accepts (G, x)

where one says that A accepts if it accepts at all nodes. More formally, given a graph G , let ID(G) be the set of all injective 
functions from V (G) to positive integers, i.e., ID(G) denote the set of all possible identity assignments to the nodes of G . 
Then LD is the class of all distributed languages L for which there exists a local algorithm A satisfying the following: for 
every configuration (G, x),

(G, x) ∈ L ⇒ ∀id ∈ ID(G),∀u ∈ V (G),AG,x,id(u) = accept
(G, x) /∈ L ⇒ ∀id ∈ ID(G),∃u ∈ V (G),AG,x,id(u) = reject

where AG,x,id(u) is the output of Algorithm A running on the instance (G, x) with identity-assignment id, at node u. (Note 
that the two implications in the definition of LD cannot be merged into one if-and-only-if statement because LD requires 
that both ways should hold for any identity-assignment to the nodes.) For instance, the language prop-col, composed of 
all (connected) properly colored graphs, is in LD. Similarly, the class LCL of “locally checkable labelings”, defined in [14], 
satisfies LCL ⊆ LD. In fact, LCL is precisely LD restricted to configurations on graphs with constant maximum degree, and 
inputs of constant size.

The class NLD is the non-deterministic version of LD, i.e., the class of all distributed languages L for which there exists 
a local algorithm A verifying L, i.e., satisfying that, for every configuration (G, x),

(G, x) ∈ L ⇐⇒ ∃c,A accepts (G, x) with certificate c.

More formally, NLD is the class of all distributed languages L for which there exists a local algorithm A satisfying the 
following: for every configuration (G, x),

(G, x) ∈ L ⇒ ∃c ∈ C(G),∀id ∈ ID(G),∀u ∈ V (G),AG,x,c,id(u) = accepts
(G, x) /∈ L ⇒ ∀c ∈ C(G),∀id ∈ ID(G),∃u ∈ V (G),AG,x,c,id(u) = rejects

where C(G) is the class of all functions c : V (G) → {0, 1}∗ , assigning the certificate c(u) to each node u. Note that the 
certificates c may depend on the network and on the input to the nodes, but should be set independently of the actual 
identity assignment to the nodes of the network. If we were able to set certificates depending on the ID-assignment to the 
nodes, then every distributed language would be non-deterministically decidable [8,9]. In this paper, we aim at a better 
understanding of the power given to the verification protocol by the ability to set up ID-dependent certificates. For this 
purpose, we follow the guidelines of [7] by considering ID-independent certificates, hence reducing the role if IDs to mere 
mechanisms enabling each node to solely distinguishing nodes in the network. (See [2] for a more detailed description of 
the differences between ID-dependent and ID-independent certificates.) In the following, for the sake of simplifying the 
notations, we shall omit specifying the domain sets C(G) and ID(G) unless they are not clear from the context. It follows 
from the above that NLD is a class of distributed languages that can be locally verified, in the sense that, on legal instances, 
certificates can be assigned to nodes by a prover so that a verifier A accepts, and, on illegal instances, the verifier A rejects 
(i.e., at least one node rejects) systematically, and cannot be fooled by any fake certificate. For instance, the language

tree = {(G, x) : G is a tree}
is in NLD, by selecting a root r of the given tree, and assigning to each node u a counter c(u) equal to its hop-distance to r
(the hop-distance between two nodes u and v is the minimum number of edges of a path with extremities u and v). If the 
given (connected) graph contains a cycle, then no counters could be assigned to fool an algorithm checking that, at each 
node u with c(u) �= 0, a unique neighbor v satisfies c(v) < c(u), and all other neighbors w �= v satisfy c(w) > c(u). In [6], 
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