
Journal of Computer and System Sciences 96 (2018) 50–73

Contents lists available at ScienceDirect

Journal of Computer and System Sciences

www.elsevier.com/locate/jcss

Practically-self-stabilizing virtual synchrony ✩

Shlomi Dolev a,1, Chryssis Georgiou b, Ioannis Marcoullis b,∗,2, Elad M. Schiller c

a Department of Computer Science, Ben-Gurion University of the Negev, Beer-Sheva, Israel
b Department of Computer Science, University of Cyprus, Nicosia, Cyprus
c Department of Computer Science and Engineering, Chalmers University of Technology, Göteborg, Sweden

a r t i c l e i n f o a b s t r a c t

Article history:
Received 11 July 2016
Received in revised form 19 January 2018
Accepted 11 April 2018
Available online 21 April 2018

Keywords:
Practically-self-stabilization
Virtual Synchrony
Practically unbounded counters
State machine replication

The virtual synchrony abstraction was proven to be extremely useful for asynchronous, 
large-scale, message-passing distributed systems. Self-stabilizing systems can automatically 
regain consistency after the occurrence of transient faults. We present the first practically-
self-stabilizing virtual synchrony algorithm that uses a new counter algorithm that 
establishes an efficient practically unbounded counter, which in turn can be directly 
used for emulating a self-stabilizing Multiple-Writer Multiple-Reader (MWMR). Other 
self-stabilizing services include membership, multicast, and replicated state machine 
(RSM) emulation. As we base the latter on virtual synchrony, rather than consensus, the 
system can progress in more extreme asynchronous executions than consensus-based RSM 
emulations.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Virtual Synchrony (VS) is an important property provided by several Group Communication Systems (GCSs) that has 
proved to be valuable in the scope of fault-tolerant distributed systems where communicating processors are organized in 
process groups with changing membership [3]. During the computation, groups change allowing an outside observer to track 
the history (and order) of the groups, as well as the messages exchanged within each group. The VS property guarantees 
that any two processors that both participate in two consecutive such groups, should deliver the same messages in their 
respective group. Systems that support the VS abstraction are designed to operate in the presence of fail-stop failures of 
a minority of the participants. Such a design fits large computer clusters, data-centers and cloud computing, where at 
any given time some of the processing units are non-operational. Systems that cannot tolerate such failures degrade their 
functionality and availability to the degree of unuseful systems.

Group communication systems that realize the VS abstraction provide services, such as group membership and reliable 
group multicast. The group membership service is responsible for providing the current group view of the recently live and 
connected group members, i.e., a processor set and a unique view identifier, which is a sequence number of the view 

✩ An extended abstract and a technical report of this paper appeared in [1] and [2], respectively.

* Corresponding author.
E-mail addresses: dolev @cs .bgu .ac .il (S. Dolev), chryssis @cs .ucy.ac .cy (C. Georgiou), imarco01 @cs .ucy.ac .cy (I. Marcoullis), elad @chalmers .se (E.M. Schiller).

1 The research was partially supported by the Rita Altura Trust Chair in Computer Sciences; the Lynne and William Frankel Center for Computer Science; 
the Ministry of Foreign Affairs, Italy; the grant from the Ministry of Science, Technology and Space, Israel, and the National Science Council (NSC) of Taiwan; 
the Ministry of Science, Technology and Space, Infrastructure Research in the Field of Advanced Computing and Cyber Security; and the Israel National Cyber 
Bureau.

2 The research is partially-supported by a Doctoral Scholarship program of the University of Cyprus.

https://doi.org/10.1016/j.jcss.2018.04.003
0022-0000/© 2018 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jcss.2018.04.003
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcss
mailto:dolev@cs.bgu.ac.il
mailto:chryssis@cs.ucy.ac.cy
mailto:imarco01@cs.ucy.ac.cy
mailto:elad@chalmers.se
https://doi.org/10.1016/j.jcss.2018.04.003
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcss.2018.04.003&domain=pdf


S. Dolev et al. / Journal of Computer and System Sciences 96 (2018) 50–73 51

installation. The reliable group multicast allows the service clients to exchange messages with the group members as if it 
was a single communication endpoint with a single network address and to which messages are delivered in an atomic 
fashion, thus any message is either delivered to all recently live and connected group members prior to the next message, 
or is not delivered to any member. The challenges related to VS consist of the need to maintain atomic message delivery 
in the presence of asynchrony and crash failures. VS facilitates the implementation of a replicated state machine [3] that is 
more efficient than classical consensus-based implementations that start every multicast round with an agreement on the 
set of recently live and connected processors. It is also usually easier to implement [3].

Transient faults. Transient violations of design assumptions can lead a system to an arbitrary state. For example, the as-
sumption that error detection ensures the arrival of correct messages and the discarding of corrupted messages, might be 
violated since error detection is a probabilistic mechanism that may not detect a corrupt message. As a result, the message 
can be regarded as legitimate, driving the system to an arbitrary state after which, availability and functionality may be 
damaged forever, requiring human intervention. In the presence of transient faults, large multicomputer systems providing 
VS-based services can prove hard to manage and control. One key problem, not restricted to virtually synchronous systems, 
is catering for counters (such as view identifiers) reaching an arbitrary value. How can we deal with the fact that transient 
faults may force counters to wrap around to the zero value and violate important system assumptions and correctness in-
variants, such as the ordering of events? A self-stabilizing algorithm [4] can automatically recover from such unexpected 
failures, possibly as part of after-disaster recovery or even after benign temporal violations of the assumptions made in the 
design of the system. To the best of our knowledge, no stabilizing virtual synchrony solution exists. We tackle this issue in 
our work.

Practically-self-stabilization. A relatively newself-stabilization paradigm is practically-self-stabilization [5–7]. Consider an 
asynchronous system with bounded memory and data link capacity in which corrupt pieces of data (stale information) 
exist due to a transient fault. (Recall that transient faults can result in the appearance of corrupted information, which the 
system tends to spread and thus reach an arbitrary state.) These corrupted data may appear unexpectedly at any processor 
as they lie in communication links, or may (indefinitely) remain “hidden” in some processor’s local memory until they are 
added to the communication links as a response to some other processor’s input. Whilst these pieces of corrupted data are 
bounded in number due to the boundedness of the links and local memory, they can eventually force the system to lose 
its safety guarantees. Such corrupt information may repeatedly drive the system to an undesired state of non-functionality. 
This is true for all systems and self-stabilizing systems are required to eradicate the presence of all corrupted information. 
In fact, whenever they appear, the self-stabilizing system is required to regain consistency and in some sense stabilize. One 
can consider this as an adversary with a limited number of chances to interrupt the system, but only itself knows when it 
will do this.

In this perspective, self-stabilization, as it was proposed by Dijkstra [8], is not the best design criteria for asynchronous 
systems for which we cannot specifically define when stabilization is expected to finish (in some metric like asynchronous 
cycles, for example). The newer criterion of practically-stabilizing systems is closely related to pseudo-self-stabilizing sys-
tems [9], as we explain next. Burns, Gouda and Miller [9] deal with the above challenge by proposing the design criteria of 
pseudo-self-stabilization, which merely bounds the number of possible safety violations. Namely, their approach is to abandon 
Dijkstra’s seminal proposal [8] to bound the period in which such violations occur (using some metric like asynchronous 
cycles). We consider a variation on the design criteria for pseudo-self-stabilization systems that can address additional 
challenges that appear when implementing a decentralized shared counter that uses a constant number of bits.

Self-stabilizing systems can face an additional challenge due to the fact that a single transient fault can cause the counter 
to store its maximum possible value and still (it is often the case that) the system needs to be able to increment the counter 
for an unbounded number of times. The challenge becomes greater when there is no elegant way to show that the system 
can always maintain an order among the different values of the counter by, say, wrapping to zero in such integer overflow 
events. Arora, Kulkarni and Demirbas [10] overcome the challenge of integer overflow by using non-blocking resets in the 
absence of faults described [10]. In case faults occur, the system recovery requires a blocking operation, which performs 
a distributed global reset. This work considers a design criteria for message passing systems that perform in a wait-free 
manner also when recovering from transient faults.

Note that, from the theoretical point of view, systems that take an extraordinary large number of steps (that accedes 
the counter maximum value, or even an infinite number of steps) are bound to violate any ordering constraints. This is 
because of the asynchronous nature of the studied system, which could arbitrarily delay a node from taking steps or defer 
the arrival of a message until such violations occur after, say, a counter wraps around to zero. Having practical systems in 
mind, we consider systems for which the number of sequential steps that they can take throughout their lifetime is not 
greater than an integer that can be represented using a constant number of bits. For example, Dolev, Kat and Schiller [6]
assume that counting from zero to 264 − 1 using sequential steps is not possible in any practical system and thus consider 
only a practically infinite period, of 264 sequential steps, that the system takes when demonstrating that safety is not violated. 
The design criteria of practically-self-stabilizing systems [11,5,7] requires that there is a bounded number of possible safety 
violations during any practically infinite period of the system execution. For such (message passing) systems, we provide a 
decentralized shared counter algorithm that performs in a wait-free manner also when recovering from transient faults.



Download English Version:

https://daneshyari.com/en/article/6874665

Download Persian Version:

https://daneshyari.com/article/6874665

Daneshyari.com

https://daneshyari.com/en/article/6874665
https://daneshyari.com/article/6874665
https://daneshyari.com

