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Although a simple counting argument shows the existence of Boolean functions of 
exponential circuit complexity, proving superlinear circuit lower bounds for explicit
functions seems to be out of reach of the current techniques. There has been a (very 
slow) progress in proving linear lower bounds with the latest record of 3 1

86 n − o(n). All 
known lower bounds are based on the so-called gate elimination technique. A typical gate 
elimination argument shows that it is possible to eliminate several gates from a circuit by 
making one or several substitutions to the input variables and repeats this inductively. In 
this paper we prove that this method cannot achieve linear bounds of cn beyond a certain 
constant c, where c depends only on the number of substitutions made at a single step of 
the induction.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

One of the most important and at the same time most difficult questions in theoretical computer science is proving 
circuit lower bounds. A binary Boolean circuit is a directed acyclic graph with nodes of in-degree either 0 or 2. Nodes of 
in-degree 0 are called inputs and are labeled by variables x1, . . . , xn . Nodes of in-degree 2 are called gates and are labeled 
by binary Boolean functions. Some k nodes are additionally labeled as the outputs of the circuit. The output gate compute 
a Boolean function {0, 1}n → {0, 1}k in a natural way. The size of a circuit C is defined as the number of gates in C and is 
denoted by gates(C). By inputs(C) we denote the number of inputs of C . A circuit complexity measure μ is a function 
assigning each circuit a non-negative real number. In particular, gates and inputs are circuit complexity measures.

By Bn,k we denote the set of all Boolean functions f : {0, 1}n → {0, 1}k . Bn is a shorthand for Bn,1. For a circuit complexity 
measure μ and a function f ∈ Bn , by μ( f ) we denote the minimum value of μ(C) over all circuits C computing f . For 
example, gates( f ) is the miniumum size of a circuit computing f .

By comparing the number of small size circuits with the total number 22n
of Boolean functions of n variables, one 

concludes that almost all such functions have circuit size at least �( 2n

n ). This was shown by Shannon in 1949 [36]. However 
we still do not have an example of a function from NP that requires circuits of superlinear size. The currently strongest 
known lower bound is (3 + 1

86 )n − o(n) [14].

✩ A preliminary version of this paper [16] appeared in the proceedings of the 41st International Symposium on Foundations of Computer Science (MFCS 
2016).
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The lack of strong lower bounds is a consequence of the lack of methods for proving lower bounds for general circuits. 
Practically, the only known method for proving lower bounds is the gate elimination method. We illustrate this method with 
a simple example. Consider the function MODn

3,r ∈ Bn which outputs 1 if and only if the sum of n input bits is congruent to 
r modulo 3. One can prove that gates(MODn

3,r) ≥ 2n − 4 for any r ∈ {0, 1, 2} by induction on n. The base case n ≤ 2 clearly 
holds. Assume that n ≥ 3 and consider an optimal circuit C computing MODn

3,r and its topologically first (with respect to 
some topological ordering) gate G . This gate is fed by two different variables xi and x j (if they were the same variable, the 
circuit would not be optimal). A crucial observation is that it cannot be the case that the out-degrees of both xi and x j are 
equal to 1. Indeed, in this case the whole circuit would depend on xi and x j through the gate G only. In particular, the four 
ways of fixing the values of xi and x j would give at most two different subfunctions (corresponding to G = 0 and G = 1), 
while MODn

3,r has three such different subfunctions: MODn−2
3,0 , MODn−2

3,1 , and MODn−2
3,2 . Assume, without loss of generality, 

that xi has out-degree at least 2. We then substitute xi ← 0, eliminate the gates fed by xi from the circuit and proceed by 
induction. The eliminated gates are those fed by xi . After the substitution, each such gate computes either a constant or 
a unary function of the other input of the gate, so can be eliminated. The resulting function computes MODn−1

3,r . Thus we 
get by induction: gates(MODn

3,r) ≥ gates(MODn−1
3,r ) + 2 ≥ (2(n − 1) − 4) + 2 = 2n − 4. This proof was given by Schnorr 

in 1984 [35]. In fact, it works for a wider class of functions Q n
2,3 containing functions that have at least three different 

subfunctions with respect to any two variables.
This example reveals the main idea of the gate elimination process: a lower bound is proven inductively by finding 

at each step an appropriate substitution that eliminates many gates from the given circuit. At the same time, using just 
bit-fixing substitutions is not enough for proving even stronger than 2n lower bounds: the class Q n

2,3 contains, in particular, 
a function THRn

2 that outputs 1 iff 
∑n

i=1 xi ≥ 2 whose circuit complexity is known to be at most 2n + o(n) [13] (see also 
Theorem 2.3 in [41]). For this reason, known proofs of stronger lower bounds use various additional tricks.

• One can use amortized analysis of the number of eliminated gates. For example, one can show that at each step one 
can either find a substitution that eliminates 3 gates or a pair of consecutive substitutions, the first one eliminating 2
gates and the next one eliminating 4 gates.

• They also substitute variables not just by constants but by affine functions, quadratic functions, and even arbitrary 
functions of other variables.

• In order to amortize for steps that eliminate too few gates, they also use more intricate complexity measures that 
combine the number of gates with the number of variables or other quantities.

We give an overview of known lower bounds and used tricks in Section 2.
One can guess that the gate elimination method changes only the top of a circuit in few places and thus cannot eliminate 

many gates. In general, this intuition fails (it is easy to present examples where a single substitution greatly simplifies 
a function, in particular, every substitution to a function of the highest possible complexity 2n/n (see Theorem 2.1 and 
below in [41]) lowers the complexity of this function almost twice as for a function of n − 1 variables it cannot exceed 
2n−1/(n − 1) + o(2n−1/(n − 1)). However, in this paper we manage to make this intuition work: we design circuits such that 
no substitution (and even a constant number of substitutions) can reduce the size of the circuit by more than a constant 
number of gates. This, in turn, implies that one cannot prove a superlinear lower bound this way. For recently popular 
measures that combine the number of gates with the number of inputs we prove a stronger result: One cannot prove lower 
bounds beyond cn for a certain specific constant c; this constant may depend on the number m of consecutive substitutions 
made in one step of the induction, but does not depend on the substitutions themselves (in all modern proofs m = 1 or 2).

The gate elimination method has also been recently used for proving average-case circuit lower bounds and upper bounds 
for Circuit #SAT [8,18]. The limitation result of this work also applies to this line of research, implying that gate elimination 
cannot lead to strong improvements on the currently known results.

The paper is organized as follows. In Section 2 we list known proofs based on gate elimination, we discuss their differ-
ences and limits. Section 3 presents several examples that lead us to the main questions of this work. This section contains 
main results of the paper: provable limits of the gate elimination method for various complexity measures. Section 4 con-
tains a brief overview of the known barriers for proving circuit lower bounds. Finally, Section 5 concludes the work with 
open questions.

2. Known lower bounds proofs

Improving Schnorr’s 2n lower bound proof mentioned above is already a non-trivial task. It can be the case that all 
variables in the given circuit feed two parity gates. In this case, substituting any variable by any constant eliminates just 
two gates from this circuit. In 1977, Stockmeyer [37] used the following clever trick to prove a 2.5n − �(1) lower bound 
for many symmetric functions including all MODn

m functions for constant m ≥ 3. The idea is to eliminate five gates by 
two consecutive substitutions. This time, instead of substituting xi ← c where c ∈ {0, 1} we substitute xi ← f , x j ← f ⊕ 1
where f is an arbitrary function that does not depend on xi and x j . One should be careful with such substitutions as they 
potentially might produce a subfunction outside of the class of functions for which we are currently proving a lower bound 
by induction. At the same time, one can see that, for example, MODn

3,0 function turns into MODn−2
3,2 function under the 
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