
Journal of Computer and System Sciences 95 (2018) 69–85

Contents lists available at ScienceDirect

Journal of Computer and System Sciences

www.elsevier.com/locate/jcss

Designing deterministic polynomial-space algorithms by 

color-coding multivariate polynomials ✩

Gregory Gutin a,∗, Felix Reidl a, Magnus Wahlström a, Meirav Zehavi b

a Royal Holloway, University of London, TW20 0EX, UK
b University of Bergen, Norway

a r t i c l e i n f o a b s t r a c t

Article history:
Received 12 June 2017
Received in revised form 19 December 2017
Accepted 30 January 2018

Keywords:
Polynomial space
Fixed-parameter tractable
Deterministic
Kirchoff matrices
Pfaffians

We introduce an enhancement of color coding to design deterministic polynomial-space 
parameterized algorithms. Our approach aims at reducing the number of random choices 
by exploiting the special structure of a solution. Using our approach, we derive polynomial-
space O ∗(3.86k)-time (exponential-space O ∗(3.41k)-time) deterministic algorithm for
k-Internal Out-Branching, improving upon the previously fastest exponential-space 
O ∗(5.14k)-time algorithm for this problem. (The notation O ∗ hides polynomial factors.) 
We also design polynomial-space O ∗((2e)k+o(k))-time (exponential-space O ∗(4.32k)-time) 
deterministic algorithms for k-Colorful Out-Branching on arc-colored digraphs and
k-Colorful Perfect Matching on planar edge-colored graphs. In k-Colorful Out-

Branching, given an arc-colored digraph D , decide whether D has an out-branching with 
arcs of at least k colors. k-Colorful Perfect Matching is defined similarly. To obtain our 
polynomial-space algorithms, we show that (n, k, αk)-splitters (α � 1) and in particular 
(n, k)-perfect hash families can be enumerated one by one with polynomial delay using 
polynomial space.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

In this paper, we modify color coding to treat multivariate polynomials, and thus design an improved deterministic 
polynomial-space algorithm for k-Internal Out-Branching (k-IOB). Before we elaborate on this problem and our con-
tribution, let us first review related previous works that motivate our study. In recent years, several powerful algebraic 
techniques have been developed to design randomized polynomial-space parameterized algorithms. The first approach was 
introduced by Koutis [1], strengthened by Williams [2], and is nowadays known as the multilinearity detection technique 
[3]. Roughly speaking, an application of this technique consists of reducing the problem at hand to one where the objec-
tive is to decide whether a given polynomial has a multilinear monomial, and then employing an algorithm for the latter 
problem as a black box.

One of the huge breakthroughs brought about by this line of research was Björklund’s [4] proof that Hamiltonian Path is 
solvable in time O∗(1.66n) by a randomized algorithm, improving upon the 50 year old O∗(2n)-time1 algorithm [5]. The ex-
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istence of a deterministic O∗((2−ε)n)-time algorithm for Hamiltonian Path, for a fixed ε > 0, is still a major open problem. 
Further, Björklund’s result is on undirected graphs, and the existence of an O∗((2−ε)n)-time algorithm for Hamiltonian 
Path on digraphs, for a fixed ε > 0, is another interesting open problem.

Shortly afterwards, Björklund et al. [6] have transformed the ideas in [4] into a powerful technique to design randomized 
polynomial-space algorithms, referred to as narrow sieves. This technique is also based on the analysis of polynomials, but 
it is applied quite differently. Here one associates a monomial with each “potential solution” in such a way that actual 
solutions correspond to unique monomials while incorrect solutions appear in pairs. Thus, the polynomial summing these 
monomials, when evaluated over a field of characteristic 2, is not identically 0 if and only if the input instance of the 
problem at hand is a yes-instance. In this context, the relevance of the Matrix Tree Theorem was already noted by Gabizon 
et al. [7].

The narrow sieves technique, proven to be of wide applicability on its own, later branched into several new methods. 
The one most relevant to our study was developed by Björklund et al. [8] and was translated into the language of deter-
minants by Wahlström [9]. Here, the studied problem was S-Cycle (or S-Path), where the goal is to determine whether 
an input graph contains a cycle that passes through all the vertices of an input set S of size k. Wahlström [9] considered 
a determinant-based polynomial (computed over a field of characteristic 2), and analyzed whether there exists a mono-
mial where the variable-set representing S is present. Very recently, Björklund et al. [10] utilized the Matrix Tree Theorem 
to improve an FPT algorithm for k-IOB, where we are asked to decide whether a given digraph has a k-internal out-
branching. Recall that an out-tree T is an orientation of a tree with only one vertex of in-degree zero (called the root). 
A vertex of T is a leaf if its out-degree in T is zero; non-leaves are called internal vertices. An out-branching of a di-
graph D is a spanning subgraph of D , which is an out-tree, and an out-branching is k-internal if it has at least k internal 
vertices.

Björklund et al. [10] cleverly transformed k-IOB into a new problem, where the goal is to decide whether a given 
polynomial (computed over a field of characteristic 2 to avoid subtractions) has a monomial with at least k distinct vari-
ables.

In this paper, we present an easy-to-use2 modification of color coding for designing deterministic polynomial-space 
parameterized algorithms, inspired by the principles underlying the above mentioned techniques. (A slight modification of 
our approach can be used to design faster, exponential-space algorithms, but we believe that the main value of the approach 
is for polynomial-space algorithms.) We will show that our approach brings significant speed-ups to algorithms for k-IOB. 
Roughly speaking, our approach can be applied as follows.

• Identify a polynomial such that it has a monomial with at least k distinct variables (called a witnessing monomial) if 
and only if the input instance of the problem at hand is a yes-instance. It should be possible to efficiently evaluate the 
polynomial (black box-access is sufficient here).

• Color the variables of the polynomial with k colors using a polynomial-delay perfect hash-family. To improve the run-
ning time of this step, we apply a problem-specific coloring guide to reduce the number of ‘random’ colors. Given a 
k-coloring, we obtain a smaller polynomial by identifying all variables of the same color.

• Use inclusion-exclusion to extract the coefficient of a colorful monomial from the reduced polynomial. By the usual 
color-coding arguments, if the coefficient is not equal to zero then the original polynomial contained a witnessing 
monomial.

While we were unable to obtain non-trivial coloring guides to the following problems, even limited application of our ap-
proach is useful for designing polynomial-space algorithms for these problems. It would be interesting to obtain non-trivial 
coloring guides for the problems.

Colorful Out-Branchings and Matchings Every subgraph-search problem can be extended quite naturally by imposing ad-
ditional constraints on the solution, for example by letting the input graph have labels or weights. One class of such 
constraints states that a required subgraph of an edge-colored graph has to be k-colorful, i.e. to contain edges of at least k
colors.

One prominent problem is Rainbow Matching
3 (also known as Multiple Choice Matching), defined in the classical book 

by Garey and Johnson [11]. Itai et al. [12] showed, already in 1978, that Rainbow Matching is NP-complete on bipartite 
graphs. Three decades later, Le and Pfender [13] revisited this problem and showed that it is NP-hard on several restricted 
graph classes, which include (among others) paths, complete graph and P4-free bipartite graphs in which every color is 
used at most twice. Further examples of subgraph problems with color constraints can be found in a survey by Mikio and 
Xueliang [14]. In this paper, we focus on two color-constrained problems: given an edge-colored graph and an integer k, we 
ask for either a k-colorful spanning tree/outbranching or a k-colorful perfect matching.

2 In particular, no dynamic programming/recursive algorithms are required.
3 In the problem, given an edge-colored graph G and an integer k, the aim is to decide whether G has a k-colorful matching of size k.
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