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Reading more and more bits from an infinite binary sequence that is random for a Bernoulli 
measure with parameter p, we can get better and better approximations of p using the 
strong law of large numbers. In this paper, we study a similar situation from the viewpoint 
of inductive inference. Assume that p is a computable real, and we have to eventually guess 
the program that computes p. We show that this cannot be done computably, and extend 
this result to more general computable distributions. We also provide a weak positive result 
showing that looking at a sequence X generated according to some computable probability 
measure, we can guess a sequence of algorithms that, starting from some point, compute 
a measure that makes X Martin-Löf random.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

1.1. Inductive inference

The study of learnability of computable sequences is concerned with the following problem. Suppose we have a black 
box that generates some infinite computable sequence of bits X = X(0)X(1)X(2), . . . We do not know the program running 
in the box, and want to guess it by looking at finite prefixes

X�n = X(0) . . . X(n − 1)

for increasing values of n. There could be different programs that produce the same sequence, and it is enough to guess one 
of them (since there is no way to distinguish between them by just looking at the output bits). The more bits we see, the 
more information we have about the sequence. For example, it is hard to say something about a sequence seeing only that 
its first bit is a 1, but looking at the prefix

110010010000111111011010101000

one may observe that this is a prefix of the binary expansion of π , and guess that the machine inside the box does exactly 
that (though the machine may as well produce the binary expansion of, say, 47627751/15160384).
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The hope is that, as we gain access to more and more bits, we will eventually figure out how the sequence X is generated. 
More precisely, we hope to have a total computable function A from strings to integers such that for every computable X , 
the sequence

A(X�1), A(X�2), A(X�3), . . .

converges to a program (= index of a computable function) that computes X . This is referred to as identification in the 
limit, and can be understood in (at least) two ways. Indeed, assuming that we have a fixed effective enumeration (ϕe )e∈N
of partial computable functions from N to {0, 1}, we can define two kinds of success for an algorithm A on a computable 
sequence X :

• Strong success: the sequence en = A(X�n) converges to a single value e such that ϕe = X (i.e., ϕe(k) = X(k) for all k).
• Weak success: the sequence en = A(X�n) does not necessarily converge, but ϕen = X for all sufficiently large n.

Here we assume that A(X�n) is defined for all n or at least for all sufficiently large n.
The strong type of success is often referred to as explanatory (EX), see, e.g., Definition VII.5.25 in [7, p. 116]. The second 

type is referred (see Definition VII.5.44, p. 131 in the same book) as behaviorally correct (BC). Note that it is obvious from 
the definition that strong success implies weak success.

It would be nice to have an algorithm that succeeds on all computable sequences. However, it is impossible even for 
weak success: for every (total) algorithm A, there is a computable X such that A does not weakly succeed on X . The main 
obstacle is that certain machines are not total (produce only finitely many bits), and distinguishing total machines from 
non-total ones cannot be done computably.

However, some classes of computable sequences can be learned, i.e., there exists a total algorithm that succeeds on all 
elements of the class. Consider for example the class of primitive recursive functions. This class can be effectively enumer-
ated, i.e., there is a total computable function f such that (ϕ f (e))e∈N is exactly the family of primitive recursive functions. 
Now consider the algorithm A such that A(σ ) returns the smallest e such that ϕ f (e)(i) = σ(i) for all i < |σ | (such an e
always exists, since every string is a prefix of a primitive recursive sequence). It is easy to see that if X is primitive recursive, 
A succeeds on X , even in the strong sense (EX).

The theory of learnability of computable sequences (or functions) is precisely about determining which classes of func-
tions can be learned. This depends on the learning model, the type of success, of which there are many variants. We refer 
to the survey by Zeugman and Zilles [11] and to [7, Chapter VII] for a panorama of the field.

1.2. Learning measures

Recently, Vitányi and Chater [9] proposed to study a related problem. Suppose that instead of a sequence that has 
been produced by a deterministic machine, we are given a sequence that has been generated by a randomized algorithmic 
process, i.e., by a Turing machine that has access to a fair coin and produces some output sequence on the one-directional 
write-only output tape. The output sequence is therefore a random variable defined on the probabilistic space of fair coin 
tossings. We assume that this machine is almost total.1 This means that the generated sequence is infinite with probability 1.

Looking at the prefix of the sequence, we would like to guess which machine is producing it. For example, for the 
sequence

000111111110000110000000001111111111111

we may guess that it has been generated via the following process: start with 0 and then choose each output bit to be 
equal to the previous one with probability, say, 4/5 (so the change happens with probability 1/5), making all the choices 
independently.2

So what should count as a good guess for some observed sequence? Again, there is no hope to distinguish between two 
processes that have the same output distribution. So our goal should be to reconstruct the output distribution and not the 
specific machine.

But even this is too much to ask for. Assume that we have agreed that some machine M with output distribution μ is a 
plausible explanation for some sequence X . Consider another machine M ′ that starts by tossing a coin and then (depending 
on the outcome) either generates an infinite sequence of zeros or simulates M . If X is a plausible output of M , then X is 
also a plausible output of M ′ , because it may happen (with probability 1/2) that M ′ simulates M .

A reasonable formalization of a ‘good guess’ is provided by the theory of algorithmic randomness. As Chater and Vitányi 
recall, there is a widely accepted formalization of “plausible outputs” for an almost total probabilistic machine with output 
distribution μ: the notion of Martin-Löf random sequences with respect to μ. These are the sequences that pass all effective 

1 This requirement may look unnecessary. Still the notion of algorithmic randomness needed for our formalization is well-defined only for computable 
measures, and machines that are not almost total may not define a computable measure.

2 The probability 4/5 is not a dyadic rational number, but still can be simulated by an almost total machine using a fair coin.
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