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A vertex-subset graph problem Q defines which subsets of the vertices of an input graph 
are feasible solutions. A reconfiguration variant of a vertex-subset problem asks, given two 
feasible solutions of size k, whether it is possible to transform one into the other by a 
sequence of vertex additions/deletions such that each intermediate set remains a feasible 
solution of size bounded by k. We study reconfiguration variants of two classical vertex-
subset problems, namely Independent Set and Dominating Set. We denote the former 
by ISR and the latter by DSR. Both ISR and DSR are PSPACE-complete on graphs of 
bounded bandwidth and W[1]-hard parameterized by k on general graphs. We show that 
ISR is fixed-parameter tractable parameterized by k when the input graph is of bounded 
degeneracy or nowhere dense. For DSR, we show the problem fixed-parameter tractable 
parameterized by k when the input graph does not contain large bicliques.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Given an n-vertex graph G and two vertices s and t in G , determining whether there exists a path and computing the 
length of the shortest path between s and t are two of the most fundamental graph problems. In the classical battle of
P versus NP or “easy” versus “hard”, both of these problems are on the easy side. That is, they can be solved in poly(n)

time, where poly is any polynomial function. But what if our input consisted of a 2n-vertex graph? Of course, we can no 
longer assume G to be part of the input, as reading the input alone requires more than poly(n) time. Instead, we are given 
an oracle encoded using poly(n) bits and that can, in constant or poly(n) time, answer queries of the form “is u a vertex 
in G” or “is there an edge between u and v?”. Given such an oracle and two vertices of the 2n-vertex graph, can we still 
determine if there is a path or compute the length of the shortest path between s and t in poly(n) time?

This seemingly artificial question is in fact quite natural and appears in many practical and theoretical problems. In 
particular, these are exactly the types of questions asked under the reconfiguration framework, the main subject of this 
work. Under the reconfiguration framework, instead of finding a feasible solution to some instance I of a search problem 
Q, we are interested in structural and algorithmic questions related to the solution space of Q. Naturally, given some 
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adjacency relation A defined over feasible solutions of Q, the solution space can be represented using a graph RQ(I), 
called the reconfiguration graph. RQ(I) contains one node for each feasible solution of Q on instance I and two nodes share 
an edge whenever their corresponding solutions are adjacent under A. An edge in RQ(I) corresponds to a reconfiguration 
step, a walk in RQ(I) is a sequence of such steps, a reconfiguration sequence.

Studying problems related to reconfiguration graphs has received considerable attention in the literature [1–6], the most 
popular problem being to determine whether there exists a reconfiguration sequence between two given feasible solu-
tions/configurations. In many cases, this problem was shown PSPACE-hard in general, although some polynomial-time 
solvable restricted cases have been identified. For PSPACE-hard cases, it is not surprising that shortest paths between 
solutions can have exponential length. More surprising is that for most known polynomial-time solvable cases the diam-
eter of the reconfiguration graph has been shown to be polynomial. Some of the problems that have been studied under 
the reconfiguration framework include Independent Set [7], Shortest Path [8], Coloring [9], Boolean Satisfiability [2], 
and Flip Distance [1,10]. We refer the reader to the survey by van den Heuvel [11] for a detailed overview of recon-
figuration problems and their applications. A systematic study of the parameterized complexity [12] of reconfiguration 
problems was initiated by Mouawad et al. [6]; various problems were identified where the problem was not only NP-hard 
(or PSPACE-hard), but also W-hard under various parameterizations. The reader is referred to [12] for more on parameter-
ized complexity and kernelization.

Overview of our results. In this work, we focus on reconfiguration variants of the Independent Set (IS) and Dominating Set 
(DS) problems. Given two independent sets Is and It of a graph G such that |Is| = |It | = k, the Independent Set Recon-

figuration (ISR) problem asks whether there exists a sequence of independents sets σ = 〈I0, I1, . . . , I�〉, for some �, such 
that:

(1) I0 = Is and I� = It ,
(2) Ii is an independent set of G for all 0 ≤ i ≤ �,
(3) |{Ii \ Ii+1} ∪ {Ii+1 \ Ii}| = 1 for all 0 ≤ i < �, and
(4) k − 1 ≤ |Ii | ≤ k for all 0 ≤ i ≤ �.

Alternatively, given a graph G and integer k, the R is(G, k − 1, k) reconfiguration graph has a node for each independent set 
of G of size k or k − 1 and two nodes are adjacent in R is(G, k − 1, k) whenever the corresponding independent sets can be 
obtained from one another by either the addition or the deletion of a single vertex. The reconfiguration graph Rds(G, k, k +1)

is defined similarly for dominating sets. Hence, ISR and DSR can be formally stated as follows:

Independent Set Reconfiguration (ISR)

Input: Graph G , integer k > 0, and two independent sets Is and It of size k
Question: Is there a path from Is to It in R is(G,k − 1,k)?

Dominating Set Reconfiguration (DSR)

Input: Graph G , integer k > 0, and two dominating sets Ds and Dt of size k
Question: Is there a path from Ds to Dt in Rds(G,k,k + 1)?

Note that since we only allow independent sets of size k and k − 1 the ISR problem is equivalent to reconfiguration un-
der the token jumping model considered by Ito et al. [13,14]. ISR is known to be PSPACE-complete on graphs of bounded 
bandwidth [15] (hence pathwidth and treewidth) and W[1]-hard when parameterized by k on general graphs [14]. On the 
positive side, the problem was shown fixed-parameter tractable, with parameter k, for graphs of bounded degree, planar 
graphs, and graphs excluding K3,d as a (not necessarily induced) subgraph, for any constant d [13,14]. We push this bound-
ary further by showing that the problem remains fixed-parameter tractable for graphs of bounded degeneracy and nowhere 
dense graphs. As a corollary, we answer positively the question concerning the parameterized complexity of the problem 
parameterized by k on graphs of bounded treewidth.

For DSR, we show that the problem is fixed-parameter tractable, with parameter k, for graphs excluding Kd,d as a (not 
necessarily induced) subgraph, for any constant d. Note that this class of graphs includes both nowhere dense and bounded 
degeneracy graphs and is the “largest” class on which the Dominating Set problem is known to be in FPT [16,17].

Our main open question, which was recently answered positively by Bousquet et al. [18], is whether ISR remains 
fixed-parameter tractable on graphs excluding Kd,d as a subgraph. Also closely related is the work of Siebertz [19]
who showed that for the distance-r variants of Independent Set and Dominating Set the reconfiguration problems be-
come W[1]-hard on somewhere dense graphs. Specifically, if a class of graphs C is somewhere dense and closed under 
taking subgraphs, then for some value of r ≥ 1 the reconfiguration problems are W[1]-hard. It remains to be seen 
whether we can adapt our results for ISR to find shortest reconfiguration sequences. Our algorithm for DSR does in 
fact guarantee shortest reconfiguration sequences but, as we shall see, the same does not hold for either of the two ISR

algorithms.
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