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We introduce an online version of the multiselection problem, in which q selection queries 
are requested on an unsorted array of n elements. We provide the first online algorithm 
that is 1-competitive with the offline algorithm proposed by Kaligosi et al. [14] in terms 
of comparison complexity. Our algorithm also supports online search queries efficiently. 
We then extend our algorithm to the dynamic setting, while retaining online functionality, 
by supporting arbitrary insertions and deletions on the array. Assuming that the insertion 
of an element is immediately preceded by a search for that element, our dynamic online 
algorithm performs an optimal number of comparisons, up to lower order terms and an 
additive O (n) term.
For the external memory model, we describe the first online multiselection algorithm that 
is O (1)-competitive. This result improves upon the work of Sibeyn [20] when q = ω(m1−ε)

for any fixed positive constant ε, where m is the number of blocks that can be stored in 
main memory. We also extend it to support searches, insertions, and deletions of elements 
efficiently.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The multiselection problem asks for elements of rank ri from the sequence R = {r1, r2, . . . , rq} on an unsorted array A
of size n drawn from an ordered universe of elements. We define B(Sq) as the information-theoretic lower bound on 
the number of comparisons required (in the comparison model) to answer q selection queries, where Sq = {s1, s2, . . . , sq}
denotes the queries ordered by rank. This lower bound can be obtained by taking the number of comparisons needed to 
sort the entire array, and then subtracting the comparisons needed to sort the query gaps. (Please see Section 2.2 for more 
details on this bound.) The online multiselection problem asks for elements of rank ri , where the sequence R is given one 
element at a time. The lower bound B(Sq) also applies to search queries in the offline model, as well as to both types of 
queries in the online model.

✩ A preliminary version of these results have appeared in the proceedings of ESA-2013 [2] and WALCOM-2015 [3].
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The dynamic online multiselection problem supports select, search, insert and delete operations, described below:

• select(s), returns the position of the sth smallest element in A;
• search(p), returns the position of the largest element y ≤ p from A;
• insert(p), inserts p into A; and
• delete(s), deletes the sth smallest element from A.

1.1. Previous work

Offline Multiselection. Several papers have analyzed the offline multiselection problem, but all of these approaches re-
quired the queries to be known in advance. Dobkin and Munro [8] gave a deterministic algorithm for this prob-
lem using 3B(Sq) + O (n) comparisons. Prodinger [18] proved the expected comparisons with random pivot selec-
tion is at most 2B(Sq) ln 2 + O (n). More recently, Kaligosi et al. [14] described a randomized algorithm that uses 
B(Sq) + O (n) expected comparisons, along with a deterministic algorithm that performs B(Sq) + o(B(Sq) + O (n) com-
parisons. Jiménez and Martínez [13] later improved the bound on the number of comparisons in the expected case 
to B(Sq) + n + o(n), when q = o(

√
n). Cardinal et al. [7] generalized the problem to partial order production (of 

which multiselection is a special case), and they used multiselection as a subroutine after an initial preprocessing 
phase.

In the external memory model [1] with internal memory M and block size B , we use N to denote the number of 
elements in A. We also define n = N/B and m = M/B in external memory. Sibeyn [20] solved external multiselection using 
n + nq/m1−ε I/Os, where ε is any fixed positive constant. The first term comes from creating a static index structure using 
n I/Os, and the remaining nq/m1−ε comes from answering q searches using that index. In addition, this result requires the 
condition that B = �(logm n).4 When q = m, Sibeyn’s multiselection algorithm takes O (nmε) I/Os, whereas the optimum is 
�(n) I/Os. In fact, his bounds are ω(Bm(Sq)), for any q = ω(m1−ε), where Bm(Sq) is the lower bound on the number of I/Os 
required. (See Section 6.1 for the definition of Bm(Sq).)

Online Multiselection. Motwani and Raghavan [17] introduced the static online multiselection problem, where selection and 
search queries arrive one at a time, as a “Deferred Data Structure” for sorting. (In other words, the input array is sorted 
over time, as queries are answered.) Barbay et al. [2] described a simpler solution with an improved analysis that matched 
the offline results of Kaligosi et al. [14]. Ching et al. [21] extended Motwani and Raghavan’s solution [17] to support inser-
tion and deletion, with optimal amortized complexity in the worst case over instances with a fixed number q of queries. 
Our solution is simpler, and our analysis finer, in the worst case over instances where the query positions are fixed. To 
the best of our knowledge, there are no existing dynamic results for the multiselection problem in the external memory 
model.

1.2. Our results

For the dynamic online multiselection problem in internal memory, we describe the first algorithm that supports 
a sequence R of q selection, search, insert, and delete operations, of which q′ are search, insert, and delete, using 
B(Sq) + o(B(Sq) + O (n + q′ log n) comparisons.5 For the online multiselection problem (when q′ = 0), our algorithm is 
1-competitive with the offline algorithm of Kaligosi et al. [14] in the number of comparisons performed. In addition, we 
obtain a randomized result that matches (i.e., is 1-competitive with) the performance of Kaligosi et al. [14], while only 
using O ((log n)O (1)) sampled elements instead of O (n3/4) elements.

For the external memory model [1], we describe an external online multiselection algorithm on an unsorted array A of 
size N , using O (Bm(Sq)) I/Os, where Bm(Sq) is a lower bound on the number of I/Os required to support the given queries. 
This result improves upon the work of Sibeyn [20] when q = ω(m1−ε) for any fixed positive constant ε . We also extend it 
to support search, insert, and delete operations using O (Bm(Sq) + q logB N) I/Os.

1.3. Preliminaries

Given an unsorted array A of length n, the median of A is the element x such that �n/2� elements in A are no greater 
than x. It is well-known that the median can be computed in O (n) comparisons, and many [11,5,19] have analyzed the 
exact constants involved. Dor and Zwick [9] provided the best known constant, yielding 2.942n + o(n) comparisons.

With a linear time median-finding algorithm, one can obtain a linear time algorithm to select the element of a specified 
rank r in A. Dobkin and Munro [8] considered the extension of this selection problem to the multiselection problem, and 
gave an algorithm that requires an asymptotically optimal number of comparisons. As mentioned earlier, Kaligosi et al. [14]

4 We use the notation logb a to refer to the base b logarithm of a. By default, we let b = 2. We also define lna as the base e logarithm of a.
5 For the dynamic portion of the result, we make the (mild) assumption that the insertion of an element is immediately preceded by a search for that 

element. In that case, our dynamic online algorithm performs an optimal number of comparisons, up to lower order terms and an additive O (n) term.
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