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Common intervals have been defined as a modelization of gene clusters in genomes 
represented either as permutations or as sequences. Whereas optimal algorithms for 
finding common intervals in permutations exist even for an arbitrary number of
permutations, in sequences no optimal algorithm has been proposed yet even for only 
two sequences. Surprisingly enough, when sequences are reduced to permutations, the 
existing algorithms perform far from the optimum, showing that their performances are 
not dependent, as they should be, on the structural complexity of the input sequences.
In this paper, we propose to characterize the structure of a sequence by the number q
of different dominating orders composing it (called the domination number), and to use a 
recent algorithm for permutations in order to devise a new algorithm for two sequences. 
Its running time is in O (q1q2 p + q1n1 + q2n2 + N), where n1, n2 are the sizes of the two 
sequences, q1, q2 are their respective domination numbers, p is the alphabet size and 
N is the number of solutions to output. This algorithm performs better as q1 and/or q2
reduce, and when the two sequences are reduced to permutations (i.e. when q1 = q2 = 1) 
it has the same running time as the best algorithms for permutations. It is also the first 
algorithm for sequences whose running time involves the parameter size of the solution. 
As a counterpart, when q1 and q2 are of O (n1) and O (n2) respectively, the algorithm is 
less efficient than other approaches.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

One of the main assumptions in comparative genomics is that a set of genes occurring in neighboring locations within 
several genomes represent functionally related genes [8,13,17]. Such clusters of genes are then characterized by a highly 
conserved gene content, but a possibly different order of genes within different genomes. Common intervals have been 
defined to model clusters [20], and have been used since to detect clusters of functionally related genes [14,18], to compute 
similarity measures between genomes [4,2] and to predict protein functions [10,21].

Depending on the representation of genomes in such applications, allowing or not the presence of duplicated genes, 
comparative genomics requires for finding common intervals either in sequences or in permutations over a given alphabet. 
Whereas the most general – and thus useful in practice – case is the one involving sequences, the easiest to solve is the one 
involving permutations. This is why, in some approaches [1,2], sequences are reduced to permutations by renumbering the 
copies of the same gene according to evolutionary based hypothesis. Another way to exploit the performances of algorithms 
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Table 1
Running time for the existing algorithms when (1) the input sequences are as general as possible (lengths n1 and n2), when (2) one of them is a permutation 
(lengths n1 = p = |Σ | and n2 ≥ p), and when (3) both are permutations (lengths n1 = n2 = p = |Σ |). The running time of Didier’s algorithm is updated 
according to Schmidt and Stoye’s remark. On the last line, we add the memory space needed by each algorithm (n1 = p and n1 = n2 = p respectively hold 
for the second and third case). Parameters l1, l2, q1, q2 are described in the text.

Sequence type Didier [7] Schmidt and Stoye [16] Kolpakov and Raffinot [12] Our algorithm

Seq. vs. Seq. O (n1n2) O (n1n2) O (n1 + n2 + l1 log p + l2 log p + N) O (q1q2 p + q1n1 + q2n2 + N)

Perm. vs. Seq. O (pn2) O (pn2) O (n2 + p2 log p + l2 log p + N) O (q2n2 + N)

Perm. vs. Perm. O (p2) O (p2) O (p2 log p) O (p + N)

Memory space O (n1 + n2) O (n1n2) O (n1 + n2 + l1 log p + l2 log p) O (n1 + n2)

for permutations in dealing with sequences is to see each sequence as a combination of several permutations, and to deal 
with these permutations rather than with the sequences. This is the approach we use here.

In permutations on p elements, finding common intervals may be done in O (Kp + N) time where K is the number of 
permutations and N the number of solutions, using several algorithms proposed in the literature [20,5,9,15]. In sequences 
(see Table 1), even when only two sequences T and S of respective sizes n1 and n2 are considered, the best solutions take 
quadratic time. In a chronological order, the first algorithm is due to Didier [7] and performs in O (n1n2 log n2) time and 
O (n1 +n2) space. Shortly later, Schmidt and Stoye [16] propose an O (n1n2) algorithm which needs O (n1n2) space, and note 
that Didier’s algorithm may benefit from an existing result to achieve O (n1n2) running time whereas keeping the linear 
space. Both these algorithms use T to define, starting with a given element of it, growing intervals of T with fixed leftpoint 
and variable rightpoint, that are searched for into S . Alternative approaches attempt to avoid multiple searches of the same 
interval of T , due to multiple locations, by efficiently computing all intervals in T and all intervals in S before comparing 
them. The best running time reached by such an algorithm is in O (n1 + n2 + l1 log p + l2 log p + N), obtained by merging 
the fingerprint trees proposed in [12], where l1 (respectively l2) is the number of maximal locations of the intervals in T
(respectively S), p is the size of the alphabet and N is the number of solutions to output. The value l1 (and similarly for l2) 
is in Ω(p2) and does not exceed n1 p.

The running times of all the existing algorithms have at least two main drawbacks: first, they do not involve at all 
the number N of output solutions; second, they insufficiently exploit the particularities of the two sequences and, in the 
particular case where the sequences are reduced to permutations, need quadratic time instead of the optimal O (p + N)

time for two permutations on p elements. That means that their performances insufficiently depend both on the inherent 
complexity of the input sequences, and on the amount of results to output. Unlike the algorithms dealing with permutations, 
the algorithms for sequences lack of criteria allowing them to decide when the progressive generation of a candidate must 
be stopped, since it is useless. This is the reason why their running time is independent of the number of output solutions. 
This is also the reason why when sequences are reduced to permutations the running time is very unsatisfactory.

The most recent optimal algorithm for permutations [15] proposes a general framework for efficiently searching for 
common intervals and all of their known subclasses in K permutations, and has a twofold advantage, not proposed by 
other algorithms. First, it permits an easy and efficient selection of the common intervals to output based on two types 
of parameters. Second, assuming one permutation has been renumbered to be the identity permutation, it outputs all 
common intervals with the same minimum value together and in increasing order of their maximum value. We use here 
these properties to propose a new algorithm for finding common intervals in two sequences. Our algorithm strongly takes 
into account the structure of the input sequences, expressed by the number q of different dominating orders (which are 
permutations) composing the sequence (q = 1 for permutations). Consequently, it has a complexity depending both on this 
structure and on the number of output solutions. It runs in optimal O (p + N) time for two permutations on p elements, is 
better than the other algorithms for sequences composed of few dominating orders and, as a counterpart, it performs less 
well as the number of composing dominating orders grows.

The structure of the paper is as follows. In Section 2 we define the main notions, including that of a dominating order, 
and give the results allowing us a first simplification of the problem. In Section 3 we propose our approach for finding 
common intervals in two sequences based on this simplification, for which we describe the general lines. In Sections 4, 5
and 6 we develop each of these general lines and prove correctness and complexity results. As the running time of the 
algorithm strongly relies on a data structure of type Union–Find, defined in A. Itai’s manuscript [11], we describe this data 
structure in Section 7. Section 8 is the conclusion.

2. Preliminaries

Let T be a sequence of length n over an alphabet Σ := {1, 2, . . . , p}. We denote the length of T by ‖T ‖, the set of 
elements in T by Set(T ), the element of T at position i, 1 ≤ i ≤ n, by ti and the subsequence of T delimited by positions 
i, j (included), with 1 ≤ i ≤ j ≤ n, by T [i.. j]. An interval of T is any set I of integers from Σ such that there exist i, j with 
1 ≤ i ≤ j ≤ n and I = Set(T [i.. j]). Then [i, j] is called a location of I on T . A maximal location of I on T is any location [i, j]
such that neither [i − 1, j] nor [i, j + 1] is a location of I .

When T is the identity permutation Idp := (12 . . . p), we denote (i.. j) := {i, i + 1, . . . , j}, which is also Set(Idp[i.. j]). 
Note that all intervals of Idp are of this form, and that each interval has a unique location on Idn . When T is an arbitrary 
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