The Journal of Logic and Algebraic Programming 81 (2012) 390-407

Contents lists available at SciVerse ScienceDirect

P The Journal of Logic and Algebraic Programming
ELSEVI

G

ER journal homepage:www.elsevier.com/locate/jlap

Automated debugging based on a constraint model of the program
and a test case™

Franz Wotawa *, Mihai Nica, [ulia Moraru

Technische Universitdt Graz, Institute for Software Technology, Inffeldgasse 16b/2, A-8010 Graz, Austria

ARTICLEINFO ABSTRACT
Article history: Debugging, i.e., fault localization, in case of a detected failure is a time consuming and in-
Available online 15 March 2012 tricate task. The automation or at least partial automation of debugging is therefore highly

desired. In this paper, we discuss some of the most recent approaches for debugging namely
spectrum-based, slicing-based, and model-based debugging. We focus on the latter, and
Algorithmic debugging introduce Fhe underlying theory as well as discuss emp@rical.results obte.lined from our im—
Model-based debugging plementation. The model-based approach we present in this paper relies on a constraint
Constraints representation of a program that is equivalent to the original program in terms of the input-
Constraint satisfaction problem output behavior under some reasonable assumptions. By using constraints for representing
programs and subsequently test cases we are able to state the debugging problem as a con-
straint satisfaction problem that can be effectively solved using a todays constraint solver.
The given empirical results indicate that the approach can be used for debugging smaller
programs in less than 1 s. Moreover, we briefly compare the three approaches and suggest a
combination of them in order to improve the results and the overall necessary running time.

© 2012 Elsevier Inc. All rights reserved.

Keywords:
Automated debugging

1. Introduction

Program debugging, i.e., the detection, localization, and correction of programs, is generally considered a hard problem
especially after program deployment, but of huge practical value. Support of program debugging helps to keep direct and
indirect costs of software development low. Faults that are corrected early in the development process cause less costs than
faults revealed after shipping the software to the customers. Therefore, most of the research activities since the beginnings
of software engineering have focused on verification and validation in order to ensure program correctness. Only a little
research effort has been spent in developing tools for debugging. In this paper, we discuss some, but not all methods for
automated fault localization and present one, i.e., model-based debugging, in more detail.

In the context of the paper, program debugging is defined as the activity carried out by humans or a program itself that
localizes a root cause in the source code of a program, which is responsible for an observed behavior deviating from the
expected one. Obviously, after finding the root cause, we are also interested in making the corrective changes, but this part
of debugging as a whole is not in the focus of this paper. The given definition of debugging is a very general one. Until now,
we have not introduced any restriction regarding how to observe a deviation. For example, such a deviation might come
from user demands that are not implemented in the deployed program. Such a root cause requires adding functionality to
the program and has to do with re-design. Another reason for inconsistencies is that the program does not pass all test cases.
As a consequence, verification reveals a faulty behavior and the cause usually has to be tracked down to parts of the source
code responsible for the misbehavior. Note that a program might fail passing a test case because the program computes a
wrong value for a variable or raises an exception like a division-by-zero exception.

* Authors are listed in revers alphabetical order.
* Corresponding author.
E-mail addresses: wotawa@ist.tugraz.at (F. Wotawa), mnica@ist.tugraz.at (M. Nica), imoraru@ist.tugraz.at (I. Moraru).

1567-8326/$ - see front matter © 2012 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.jlap.2012.03.002

http://dx.doi.org/10.1016/j.jlap.2012.03.002
http://www.sciencedirect.com/science/journal/15678326
www.elsevier.com/locate/jlap
http://dx.doi.org/10.1016/j.jlap.2012.03.002

F. Wotawa et al. / Journal of Logic and Algebraic Programming 81 (2012) 390-407 391

1. i=1;

2. min = input[0];

3. max = input[0];

4. while (i < length) {

5. if (input[i] < min) {
6. min = input[i];
7. b

8. if (input[i] > max) {
9. max = input[i];
10. b

11. i=1+1;

12. }

13. result = min * max; // BUG should be result = min + max;

Fig. 1. A program fragment computing the minimum, maximum, and sum of both for an array of integers.

Table 1

The test suite used to verify the program from Fig. 1.
Test case Input / input Expected output
A [1] result = 2, min = 1, max = 1
B [1, 21 result = 3, min = 1, max = 2
C [2,1, 3, 01 result = 3, min = 0, max = 3
D [0, 1, 2, 3] result = 3, min = 0, max = 3
E [2, 11 result = 3, min = 1, max = 2

In the approach presented in this paper we rely on some restrictions. We assume that the source code of the program
as well as a test suite comprising at least one failing test case is given. We further restrict debugging to cases where the
original program computes a wrong value for at least one program variable. We assume that the program to be debugged is
syntactically correct, does not comprise any type errors and infinite loops, and that the corrected program is a close variant
of the original one.

For the purpose of explaining our approach, we make use of a small program fragment depicted in Fig. 1. This fragment
computes the minimum and maximum of a collection of integers stored in an array as well as the sum of the minimum and
maximum under the pre-condition that the array comprises at least one element. Otherwise, an Out of Bounds exception
would be raised when accessing the first element of the array in Line 2. Note, that changing this program in order to avoid the
exception is simple, but increases the program size, which is less appropriate for explanation purposes. Moreover, because
of the same reason and our assumptions, we exclude all definitions and type informations from the source code.

The program fragment comprises a bug in Line 13. In order to detect the faulty behavior we introduce a test suite
comprising five different test cases (see Table 1). Each of them specifies values for the input variables and the expected
output. When running our example program on each test case, the fragment returns unexpected values. So how to obtain
the root cause for this detected misbehavior? Let us explain model-based debugging for extracting the root cause. For this
purpose consider test case A from Table 1. When running the program on test case A only the following statements are
executed:

1. i=1;

2. min = input[0];

3. max = input[0];

4. while (i < length) {
12. }
13. result = min * max;

Let us now assume that each of these statements is represented by a relation (or mathematical equation) R(vy, ..., vg)
over the used variables vy, . . ., vk in that statement. Moreover, let us assume that each relation has an unique corresponding
predicate —ABg. A relation is used in a derivation if its corresponding variable is true. Formally, we represent this using the
horn clause —=ABg — R(vq, ..., V). Forexample, we represent statement 1. i = 1; usingrule —=AB; — i = 1,where

i = 1is arelation stating that i has to be 1. We obtain similar rules for the other assignment statements. For simplicity and
because of the fact that the while-statement is not executed, we ignore it. We describe the handling of such statements later
in this paper.

The idea of model-based debugging is to use the set of obtained rules for debugging. We automatically obtain this set,
which is the model, from the source code of the program. Hence, there is no need to manually construct the model. An
explanation, i.e., a root cause, for a test case, which is called a diagnosis, is an assignment of truth values to the —ABg
predicates such that the model together with the test case is satisfiable. Note that we represent the test case itself as set of
relations.

Download English Version:

https://daneshyari.com/en/article/6874802

Download Persian Version:

https://daneshyari.com/article/6874802

Daneshyari.com

https://daneshyari.com/en/article/6874802
https://daneshyari.com/article/6874802
https://daneshyari.com/

