
Journal of Logical and Algebraic Methods in Programming 100 (2018) 98–112

Contents lists available at ScienceDirect

Journal of Logical and Algebraic Methods in 

Programming
www.elsevier.com/locate/jlamp

Finding models through graph saturation

Sebastiaan J.C. Joosten

Formal Methods and Tools group, University of Twente, the Netherlands

a r t i c l e i n f o a b s t r a c t

Article history:
Received 29 October 2017
Received in revised form 21 April 2018
Accepted 16 June 2018
Available online xxxx

We give a procedure that can be used to automatically satisfy invariants of a certain 
shape. These invariants may be written with the operations intersection, composition and 
converse over binary relations, and equality over these operations. We call these invariants 
sentences that we interpret over graphs. For questions stated through sets of these 
sentences, this paper gives a semi-decision procedure we call graph saturation. It decides 
entailment over these sentences, inspired on graph rewriting. We prove correctness of the 
procedure. Moreover, we show the corresponding decision problem to be undecidable. This 
confirms a conjecture previously stated by the author [7].

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

The question ‘what models does a set of formulas T have’ has practical relevance, as it is an abstraction of an information 
system: We interpret the data set stored in an information system at a certain point in time as a model, and each invariant 
of the system corresponds to a formula in T . This correspondence is the core idea behind languages such as Ampersand [8], 
that define an information system this way. Users of an information system try to change the data set continually. These 
changes might violate the constraints. While Ampersand responds to such violations by rejecting the change, it would be 
convenient to automatically add data items such that all constraints are satisfied. The question then becomes: what data 
items should be added? We solve this question partially by means of a graph saturation procedure.

The question ‘does a set of formulas T have a model satisfying all formulas’ essentially asks whether T is free of 
contradictions. So far, we did not discuss the language in which we can write the formulas in T . Several interesting problems 
arise when restricting the language in which we can write formulas: the satisfiability problem is obtained by restricting to 
disjunctions of positive and negative literals. Restricting to linear integer equalities, we obtain the linear programming 
problem. In this paper, we restrict those formulas to equalities over terms, in which terms are expressions of relations 
combined through the allegorical operations.1 We define sentence to be a formula over the restricted language considered 
in this paper (Definition 3).

Our interest in this language stems from experience in describing systems in Ampersand. All operations from relation-
algebra are part of the Ampersand language. The operations considered here include only the most frequently used subset 
of those operations. Therefore, many of the formulas used in Ampersand will be sentences as considered in this work. We 
therefore consider this work a step towards an Ampersand system that helps the user find models.

E-mail address: Sebastiaan.Joosten@utwente.nl.
1 These are �, �, ̆ and 1. See the book by Freyd and Scedrov for details on allegories [4].

https://doi.org/10.1016/j.jlamp.2018.06.005
2352-2208/© 2018 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jlamp.2018.06.005
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jlamp
mailto:Sebastiaan.Joosten@utwente.nl
https://doi.org/10.1016/j.jlamp.2018.06.005
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jlamp.2018.06.005&domain=pdf


S.J.C. Joosten / Journal of Logical and Algebraic Methods in Programming 100 (2018) 98–112 99

1.1. Approach

We give a short summary of the basic algorithm presented here, so we can better relate our approach to other liter-
ature, describe our contributions, and give the outline of this paper. Italicized words in the next paragraph are defined 
later.

The algorithm aims to determine whether there is a particular model for a set of sentences, say T , and is guaranteed 
to terminate if no such model exists. It proceeds to construct a (possibly infinite) model otherwise. The procedure has two 
phases: first, we translate the sentences in T into a set of graph rules. We then apply a saturation procedure on the graph 
rules. This procedure creates a chain of graphs, whose limit is a least consequence graph. A graph contains a conflict if it has 
an edge with the label ⊥. If a least consequence graph contains a conflict, then there is no model for T . Otherwise, the least 
consequence graph corresponds to a model of T , if the graph rules correspond to T according to a straightforward translation. 
We abort the procedure as soon as a conflict arises, because we can be sure that no models for T exist in this case. A second 
question we can answer through the same algorithm is that of entailment: entailment is the question whether a sentence φ

follows from a set of sentences T .
In an information system, a least consequence graph is a well suited to determine which data items to add: If conflict 

free, it corresponds to a graph that maintains the invariants. At the same, it only contains necessary consequences: it will 
not cause data items to be added that have nothing to do with the change the user made.

1.2. Related work

We compare the work in this paper to existing work in two ways: work it is similar to in motivation, and work it is 
similar to in implementation from an abstract perspective. In motivation, our research is closely related to the Alcoa tool, 
which we’ll discuss first. In approach, our methods are related to description logics and to graph rewriting, which we’ll 
discuss second.

The Alcoa tool Our search for a reasoner for Ampersand is related to Alcoa [6], which is the analyzer for Alloy [5], a lan-
guage based on Z [13]. Like Ampersand, the languages Z and Alloy are based on relations. Alloy is a simplification of Z: it 
reduces the supported operations to a set that is small yet powerful. This paper differs from Alloy in the expressivity of its 
operations, however: Alloy allows writing full first order formula’s plus the Kleene-star, making it a language that is even 
more expressive than Ampersand. We compare to Alcoa because this work is similar in purpose.

In Alloy, a user may write assertions, which are formulas that the user believes follow from the specification. Alcoa tries 
to find counterexamples to those assertions, as well as a finite model for the entire specification. Unfortunately, several 
properties of the Alcoa tool hinder our purposes in Ampersand: Alcoa requires an upper bound on the size of (or number 
of elements in) the model. It does not perform well if this bound is too large. In a typical information system, the amount 
of data is well above what can be considered ‘too large’. As an additional complication, we cannot adequately predict the 
size of the model we might require. This is why we look at other methods for achieving similar goals.

Description logics We can regard our procedure as a way to derive facts from previously stated facts: this is what happens 
in terms of sentences between subsequent graphs in the chain we create. So called description logics are languages used 
in conjunction with an engine, that gives a procedure to learn new facts from previously learned facts, using declarative 
statements (or rules) in the corresponding description logic. For a good overview of description logics, see the book on that 
topic by Baader [1].

A set of derivation rules is consistent if it has a model. For a highly expressive description logic such as OWL DL, 
determining consistency is undecidable. Still, a rule engine for OWL DL will happily try to learn new facts until a model 
is found. Users of OWL DL typically need to ensure that the stated derivation rules together with the rule engine give a 
terminating procedure. For many description logics, termination of its rule engine is syntactically guaranteed, and these 
logics are consequentially decidable.

The description logic for which the language and implementation is closest to our language is the logic EL and its 
extensions proposed by Baader et al. [2,3]. Instead of using tableau-based procedures, as most description logics, it uses a 
saturation-based reasoner. Syntax of the derivation rules is limited to ensure termination of any saturation procedure: EL
allows statements about unary relations using top, bottom, individual elements called ‘nominal’, and conjunction. Statements 
about binary relations use a different syntax, that can be translated into sentences using composition, converse and the 
identity relation (but not necessarily vice-versa). By modeling EL’s unary relations as binary relations that are a subset 
of the identity relation, all of EL and its extensions can be expressed through the sentences described in this paper. In 
particular, the syntax of EL does not have disjunctions, thus eliminating the need for backtracking. In fact, EL is designed 
such that its consistency can be decided deterministically in polynomial time. Its extensions have different complexity 
bounds, but preserve polynomial runtime for the fragment that falls within EL.

In our work, we do not work under the assumption of termination: neither the user or the syntax guarantees it. This 
allows us to use a richer language than one that is syntactically guaranteed to terminate. Despite this lack of termination, 
we do ensure termination in case of conflicts: a conflict will be found if our sentences imply it. This allows the user 
to approach certain problems through any set of rules within the grammar, rather than just those sets for which the 



Download English Version:

https://daneshyari.com/en/article/6874823

Download Persian Version:

https://daneshyari.com/article/6874823

Daneshyari.com

https://daneshyari.com/en/article/6874823
https://daneshyari.com/article/6874823
https://daneshyari.com

