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The specification of a concurrent program module, and the verification of implementations 
and clients with respect to such a specification, are difficult problems. A specification 
should be general enough that any reasonable implementation satisfies it, yet precise 
enough that it can be used by any reasonable client. We survey a range of techniques 
for specifying concurrent modules, using the example of a counter module to illustrate the 
benefits and limitations of each. In particular, we highlight four key concepts underpinning 
these techniques: auxiliary state, interference abstraction, resource ownership and atomici-
ty. We demonstrate how these concepts can be combined to achieve two powerful 
approaches for specifying concurrent modules and verifying implementations and clients, 
which remove the limitations highlighted by the counter example.
© 2018 The Authors. Published by Elsevier Inc. This is an open access article under the CC 

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The specification of a concurrent program module and the verification of implementations and clients with respect to 
such a specification are difficult problems. When concurrent threads work with shared data, the resulting behaviour can be 
complex. Reasoning about such modules in a tractable fashion requires effective abstractions that hide this complexity. To 
be effective, an abstract specification of a module must balance two key requirements: it must be general enough that any 
reasonable implementation satisfies it; and it must be precise enough that any intended client can use it. A specification 
that is too precise will disallow some reasonable implementations, while one that is too general will disallow reasonable 
clients. The specification should support modular verification, in that the verification of the module implementation and 
clients should only reference the specification, and not each other’s code. This requires the specification to be modular, in 
that it should capture the entire contract between a module and its clients. Since the 1970s, substantial progress has been 
made on reasoning techniques for concurrency, and recent developments have brought us closer than ever to a general 
approach to effective modular specification and verification.

In this survey paper, we describe some of the key techniques for reasoning about concurrency that have been developed 
in recent decades. We restrict our exposition to four concepts which are pervasive and underpin modern program logics 
for concurrency: auxiliary state, interference abstraction, resource ownership and atomicity. To illustrate these concepts, 
we consider a concurrent counter module, with an implementation using a spin loop (Section 2.1) and a ticket-lock client 
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function makeCounter() {
x := alloc(1); // Allocate a single cell
[x] := 0; // Initialise the value at address x with 0
return x;

}

function read(x) {
v := [x]; // Get value at address x
return v;

}

function incr(x) {
do {
v := [x]; // Get value at address x
b := CAS(x,v,v+ 1); // Compare value at address x with v and

// set it to v + 1 if they are the same
} while (b= 0); // Retry if the CAS failed
return v;

}

function wkIncr(x) {
v := [x]; // Get value at address x
[x] := v+ 1; // Set value at address x to v + 1
return v;

}

Fig. 1. A counter module given using a spin-counter implementation.

(Section 2.2). In Section 3, we look at a range of historical reasoning techniques for concurrency, and how they embody the 
key concepts:

• Owicki–Gries reasoning [1] introduces auxiliary state (Section 3.2) to abstract the internal state of threads;
• rely/guarantee reasoning [2] introduces interference abstraction (Section 3.3) to abstract the interactions between differ-

ent threads;
• concurrent separation logic [3] introduces resource ownership (Section 3.4) to encode interference abstraction as auxiliary 

state;
• linearisability [4] introduces atomicity (Section 3.5) to abstract the effects of an operation so that it appears to take 

place instantaneously.

Modern program logics, such as TaDA [5,6], Iris [7] and FCSL [8,9], combine these techniques, allowing us to prove effective 
modular specifications for concurrent modules such as the counter. We compare two approaches: a first-order approach 
used in TaDA (Section 3.6.2), and a higher-order approach introduced by Jacobs and Piessens [10] and used in Iris (Section 
3.6.1). In Section 4, we compare these approaches by showing how the spin-counter implementation can be verified against 
such a counter specification and how the ticket-lock client can be verified using the specification.

2. Concurrent modules

We use a concurrent counter module as the case study for this paper. This section describes a spin-counter implemen-
tation and a ticket-lock client.

2.1. A spin-counter implementation

Consider the spin-counter implementation of a concurrent counter shown in Fig. 1. We make use of three primitive 
atomic operations (i.e. operations that take effect at a single, discrete instant in time) for manipulating the heap. The load 
operation x := [E]; reads the value of the heap at the address given by E and assigns it to the variable x. The store 
operation [E1] := E2; stores the value E2 in the heap at the address given by E1. Finally, the compare-and-set (CAS) 
operation x := CAS(E1, E2, E3); checks if the value in the heap at the address given by E1 is equal to E2: if so, it replaces 
it with the value E3 and assigns 1 to x; otherwise, x is assigned 0.

The counter module has three operations. The read operation returns the value of the counter. The incr operation 
increments the value of the counter and returns the old value, using the compare-and-set operation to do this atomically. 
The compare-and-set can fail if the value of the counter is changed concurrently, so the operation loops (or spins) until it 
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