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Feature modeling is the most common approach for modeling software product line 
configurations. We propose a formal language-based formalization for the hierarchical 
semantics of cardinality-based feature models. We provide a transformation mapping, 
which allows us to transform a cardinality-based feature diagram to an appropriate 
regular expression. We propose a formal framework for expressing crosscutting constraints 
over cardinality-based feature diagrams. We then provide two kinds of semantics for 
constraints: the flat and the language semantics. We show how to integrate the semantics 
of diagrams and constraints over them. We also characterize some analysis operations 
over feature models in terms of operations on languages and discuss the corresponding 
decidability and computational complexity problems.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Product line (PL) engineering [5] is a very well-known industrial approach to software/hardware design. A PL is a set 
of products that share some commonalities and exhibit some variabilities, where commonalities and variabilities are usually 
captured using entities called features, “system properties that are relevant to some stakeholders” [16]. The idea of this 
approach is that, instead of producing products individually, the common core of a PL is first produced, leaving a much 
smaller task to be completed, namely the adaptation of the core to a concrete application requirement. This results in 
several advantages, including a significant reduction in development time/cost and an increase in reusability [5].

The most common method for modeling PLs is Feature modeling. A feature model (FM) is a tree of features representing 
a hierarchical structure of features, which is equipped with some special annotations on the tree’s elements showing the 
constraints on features, based on which valid configurations are built. An FM may also be equipped with some additional 
constraints called crosscutting constraints (CCs), a.k.a. cross-tree constraints [19]. As the name suggests, these constraints are 
defined on incomparable features. Two features are called incomparable if neither of them is a descendant of the other in 
the hierarchical structure. We distinguish between these constraints and the tree-structure in a feature model, and call the 
latter a feature diagram.1

Feature modeling languages could be divided into non-attributed (we call pure) and attributed FMs. Pure FMs are grouped 
into Boolean and cardinality-based FMs. Boolean FMs [28] represent product variability and commonality in terms of Boolean 
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1 There are some feature diagram variants that represent some simple crosscutting constrains (inclusive and exclusive constraints involving only two 
features) [29].
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Fig. 1. A cardinality-based feature model for vehicles.

constraints: optional/mandatory features, OR/XOR decomposition operations, and Boolean CCs. These models are not expres-
sive enough to model PLs that deal not only with the feature types, but also with the number of feature instances. In 
cardinality-based FMs (CFMs) [16], multiplicity constraints are used to represent the constraints of PLs’ configurations. Fea-
tures in attributed FMs [49] are equipped with some attributes allowing them to model extra quantitative constraints. In 
this paper, we restrict ourselves to CFMs. Since CFMs subsume Boolean FMs [16],2 the research reported in this paper can 
be also applied to Boolean FMs.

Fig. 1 represents a cardinality-based feature diagram (CFD) for a vehicle. A vehicle must have exactly one engine and any 
number of axles (imagine a futuristic vehicle model), excluding zero, one, six, and seven. The multiplicity constraints “1” 
and “2..5, 8..∞” on engine and axle, respectively, model these requirements. An engine can be optionally equipped with an 
ecosystem, represented by the subfeature eco with multiplicity constraint “0..1”. Arcs on a set of sibling features equipped 
with multiplicity constraints model groups. An engine can be either gasoline or electric but not both (note the multiplicity 
constraint “1” on the group {electric, gas}). An axle has either two or four wheels (note the multiplicity constraint 2, 4 on 
wheel). This CFD, denoted by D, is used as a running example throughout the paper. Suppose that our model also needs to 
satisfy the following requirement: “if an engine is equipped with an ecosystem, then the number of axles must be 4”. This 
cannot be expressed by multiplicity constraints on the diagram’s elements and should be considered as a CC. Let us denote 
the whole CFM (i.e., D and the above CC) by M.

The most common semantics considered for a CFM in the literature is the set of its valid flat configurations, where a 
flat configuration of a CFM is a multiset of features satisfying the constraints of the CFM [16]. As an example, the multiset 
of features {{vehicle,engine,electric,eco,axle2,wheel6}} is a valid flat configuration of the CFM M above.3 The set of all flat 
configurations is called the flat semantics of the CFM [42].

The flat semantics of a given CFM ignores the hierarchical structure of the CFM. Capturing hierarchical structures of 
CFMs is important for several reasons: Some analysis questions about the CFM rely explicitly on the hierarchical structure 
of the CFM, including the least common ancestor (LCA) of a given set of features and determining the root feature [34]. 
Such analysis questions can be used for extracting some important information of the CFM. For example, the LCA operation 
comes in handy when one wants to get a smallest subsystem of a system (modeled by an FM) such that it includes some 
specific properties (features). Some other operations, specialization and refactoring [50], compare two (or more) given FMs 
in a semantic sense.4 Relying on a poor abstraction (like the flat semantics) to define these analysis operations would make 
their definitions deficient. For instance, consider two very simple Boolean FMs M1 and M2 that are defined on the same set 
of features {a, b, c} as follows: All the features in both models are mandatory and their tree-structure are represented by 
“a = b↑ = c↑” and “a = b↑, b = c↑”, respectively. ( f = g↑ denotes that f is the parent of g .) They are equivalent in the flat 
semantics. Nevertheless, they represent two different PLs, as c is a constituent of b in the latter while this is not the case 
in the former. There are also some other challenging tasks in the domain of feature modeling, including reverse engineering
of FMs and feature model management, in which preserving the hierarchical structure of given FMs is essential: It is obvious 
why preserving the hierarchical structure of FMs is important in reverse engineering, as the output of a reverse engineering 
task must be (ideally) an FM. Given two FMs, the output of a model management operation (e.g., merge) should satisfy some 
invariant properties derived from the given models, including the hierarchical structures of the FMs. In light of the above 
discussion, we define a faithful semantics of a CFM as a semantics capturing both the flat semantics and the hierarchical 
structure of the CFM.

The main contributions of the paper are summarized as follows:
– We provide a faithful semantics for CFDs by using regular languages as the semantic domain. Because of computational 

properties of regular languages (e.g., their closure properties and complexity class SPACE(O(1))), we can claim that this 
transformation provides an efficient computational framework for reasoning about CFDs.

– We then propose a formal abstract framework for expressing CCs over CFDs. We provide two kinds of semantics for 
CCs, flat and language-based (using the class of context-sensitive languages as the semantic domain).

– We characterize some existing analysis operations over CFMs in terms of corresponding operations over languages and 
discuss their computational aspects, i.e., the corresponding decidability and complexity problems.

2 This is because any Boolean constraint can be expressed in terms of multiplicities.
3 We use the notations “{{” and “}}” to identify multisets – for a precise definition, please see Sect. 2.1.
4 The former investigates their equality and the latter investigates their subsetting relation.
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