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Determinisation and completion of finite tree automata are important operations with 
applications in program analysis and verification. However, the complexity of the classical 
procedures for determinisation and completion is high. They are not practical procedures 
for manipulating tree automata beyond very small ones. In this paper we develop an 
algorithm for determinisation and completion of finite tree automata, whose worst-case 
complexity remains unchanged, but which performs far better than existing algorithms in 
practice. The critical aspect of the algorithm is that the transitions of the determinised (and 
possibly completed) automaton are generated in a potentially very compact form called 
product form, which can reduce the size of the representation dramatically. Furthermore, 
the representation can often be used directly when manipulating the determinised 
automaton. The paper contains an experimental evaluation of the algorithm on a large 
set of tree automata examples.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

A recognisable tree language is a possibly infinite set of trees that are accepted by a finite tree automaton (FTA). FTAs 
and the corresponding recognisable languages have desirable properties such as closure under Boolean set operations, and 
decidability of membership and emptiness.

In the paper we will give a brief overview of the relevant features of FTAs, but the main goal of the paper is to focus 
on two operations on FTAs, namely determinisation and completion. These operations play a key role in the theory of FTAs, 
for example in showing that recognisable tree languages are closed under Boolean operations. Potentially, they also play 
a practical role in systems that manipulate sets of terms, but their complexity has so far discouraged their widespread 
application.

In the paper we develop an optimised algorithm that performs determinisation and optionally completion, and analyse 
its properties. The most critical aspect of the optimisation is a compact representation of the set of transitions of the 
determinised automaton, called product transitions. Experiments show that the algorithm performs well, though the worst 
case remains unchanged. We also discuss applications of finite tree automata that exploit the determinisation algorithm.
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In Section 2 the essentials, for our purposes, of finite tree automata are introduced, including the notion of product 
transitions. The operations of determinisation and completion are defined. Section 3 presents the optimised algorithm for 
determinising an FTA. It is developed in a series of stages starting from the textbook algorithm for determinisation. In Sec-
tion 3 it is shown how the algorithm can be optimised and output transitions in product form. The performance of the 
algorithm is analysed in Section 4. In Section 5 we discuss the combination of determinisation and completion of an FTA 
and show that the performance of the algorithm generating product form is as effective when generating a complete deter-
minised automaton. Section 6 reports on the performance of the algorithm on a large number of example tree automata. 
Section 7 discusses potential applications of the algorithm to problems in program analysis and verification, and also to tree 
automata problems including checking inclusion and universality. Section 8 contains a discussion of related work and finally 
in Section 9 we summarise and discuss further work and applications.

2. Preliminaries

A finite tree automaton (FTA) is a quadruple 〈Q , Q f , �, �〉, where

1. Q is a finite set called states,
2. Q f ⊆ Q is called the set of accepting (or final) states,
3. � is a set of function symbols (called the signature) and
4. � is a set of transitions.

Each function symbol f ∈ � has an arity n ≥ 0, written ar( f ) = n. Function symbols with arity 0 are called constants. Q and 
� are disjoint. Term(�) is the set of ground terms (also called trees) constructed from � where t ∈ Term(�) iff t ∈ � is 
a constant or t = f (t1, . . . , tn) where ar( f ) = n and t1, . . . , tn ∈ Term(�). Similarly Term(� ∪ Q ) is the set of terms/trees 
constructed from � and Q , treating the elements of Q as constants. Each transition in � is of the form f (q1, . . . , qn) → q, 
where ar( f ) = n and q, q1, . . . , qn ∈ Q .

To define acceptance of a term by the FTA 〈Q , Q f , �, �〉 we first define a context for the FTA. A context is a term from 
Term(� ∪ Q ∪ {•}) containing exactly one occurrence of • (which is a constant not in � or Q ). Let c be a context and 
t ∈ Term(� ∪ Q ); c[t] denotes the term resulting from the replacement of • in c by t . A term t ∈ Term(� ∪ Q ) can be 
written as c[t′] if t has a subterm t′ , where c is the context resulting from replacing that subtree by •.

The binary relation ⇒ represents one step of a (bottom-up) run for the FTA. It is defined as follows; c[l] ⇒ c[r] iff c is a 
context and l → r ∈ �. The reflexive, transitive closure of ⇒ is denoted ⇒∗ .

A run for t ∈ Term(�) exists if t ⇒∗ q where q ∈ Q . The run is successful if q ∈ Q f and in this case t is accepted by the 
FTA. There may be more than one state q such that t ⇒∗ q and hence FTAs are sometimes called NFTAs, where N stands for 
non-deterministic. A tree automaton R defines a set of terms, that is, a tree language, denoted L(R), as the set of all terms 
that it accepts. We also write L(q) to be the set of terms t such that t ⇒∗ q in a given FTA.

Definition 1. An F T A 〈Q , Q f , �, �〉 is called bottom-up deterministic if and only if � contains no two transitions with the 
same left hand side. A bottom-up deterministic FTA is abbreviated as a DFTA.

Runs of a DFTA are deterministic in the following sense; for every context c and term of form c[t] there is at most one 
term c[t′] such that c[t] ⇒ c[t′]. It follows that for every t ∈ Term(�) there is at most one q ∈ Q such that t ⇒∗ q. As far 
as expressiveness is concerned we can limit our attention to DFTAs.1 For every FTA R there exists a DFTA R ′ such that 
L(R) = L(R ′).

Definition 2. An automaton R = 〈Q , Q f , �, �〉 is complete if for all n-ary functions f ∈ � and states q1, . . . , qn ∈ Q , there 
exists a state q ∈ Q such that f (q1, . . . , qn) → q ∈ �.

It follows that in a complete FTA every term t has at least one run and furthermore in a complete DFTA each t has a run 
to exactly one state. Thus a complete DFTA defines a partition of Term(�), namely {L(q) | q ∈ Q } \ {∅}.

Definition 3. Let � be a signature and “any” a state. We define ��
any to be the following set of transitions.

{ f (

n times︷ ︸︸ ︷
any, . . . ,any) → any | f n ∈ �}

Clearly, given an FTA 〈Q , Q f , �, �〉 with any ∈ Q and ��
any ⊆ �, there is a run t ⇒∗ any for any t ∈ Term(�), that is, 

L(any) = Term(�).

1 We do not deal here with top-down deterministic FTA, which are strictly less expressive than FTAs.
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