
Journal of Logical and Algebraic Methods in Programming 94 (2018) 109–127

Contents lists available at ScienceDirect

Journal of Logical and Algebraic Methods in

Programming
www.elsevier.com/locate/jlamp

Virtually timed ambients:
A calculus of nested virtualization ✩

Einar Broch Johnsen, Martin Steffen, Johanna Beate Stumpf ∗

University of Oslo, Oslo, Norway

a r t i c l e i n f o a b s t r a c t

Article history:
Received 28 February 2017
Accepted 5 October 2017

Keywords:
Process calculi
Ambient calculi
Models of distributed systems
Models of nested virtualization
Weak timed bisimulation

Nested virtualization enables a virtual machine, which is a software layer representing
an execution environment, to be placed inside another virtual machine. Nested virtual
machines form a location hierarchy where virtual machines at every level in the hierarchy
compete with other processes at that level for processing time. With nested virtualization,
the computing power of a virtual machine depends on its position in this hierarchy
and may change if the virtual machine moves. This paper introduces the calculus of
virtually timed ambients, a formal model of hierarchical locations for execution with
explicit resource provisioning, motivated by these effects of nested virtualization. Resource
provisioning in this model is based on virtual time slices as a local resource. To reason
about timed behavior in this setting, weak timed bisimulation for virtually timed ambients
is defined as an extension of bisimulation for mobile ambients. We show that the
equivalence of contextual bisimulation and reduction barbed congruence is preserved by
weak timed bisimulation. Simulation with time relaxation is defined to express that a
system is slower than another system up to a given time bound. The calculus of virtually
timed ambients is illustrated by examples.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Virtualization technology enables the resources of an execution environment to be represented as a software layer, a
so-called virtual machine. Application-level processes are agnostic to whether they run on such a virtual machine or directly
on physical hardware. Since a virtual machine is a process, it can be executed on another virtual machine. Technologies
such as VirtualBox, VMWare ESXi, Ravello HVX, Microsoft Hyper-V, and the open-source Xen hypervisor increasingly support
running virtual machines inside each other in this way. This nested virtualization, originally introduced by Goldberg [16], is
necessary to host virtual machines with operating systems which themselves support virtualization [5], such as Microsoft
Windows 7 and Linux KVM. Nested virtualization has many uses, for example for end-user virtualization for guests, in
development, and in deployment testing. Nested virtualization is also a crucial technology to support the hybrid cloud, as it
enables virtual machines to migrate between different cloud providers [37].

To study the logical behavior of virtual machines in the context of nested virtualization, this paper develops a calculus
of virtually timed ambients with explicit resource provisioning. Previous work on process algebra with resources typically

✩ The work was supported by the Research Council of Norway through the CUMULUS project (project number: 240614) and through the SIRIUS Centre
for Scalable Data Access (www.sirius-labs.no).

* Corresponding author.
E-mail addresses: einarj@ifi.uio.no (E.B. Johnsen), msteffen@ifi.uio.no (M. Steffen), johanbst@ifi.uio.no (J.B. Stumpf).

https://doi.org/10.1016/j.jlamp.2017.10.001
2352-2208/© 2017 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jlamp.2017.10.001
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jlamp
http://www.sirius-labs.no
mailto:einarj@ifi.uio.no
mailto:msteffen@ifi.uio.no
mailto:johanbst@ifi.uio.no
https://doi.org/10.1016/j.jlamp.2017.10.001
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jlamp.2017.10.001&domain=pdf

110 E.B. Johnsen et al. / Journal of Logical and Algebraic Methods in Programming 94 (2018) 109–127

focuses on binary resources such as locks (e.g., [22,29]) and previous work on process algebra with time mainly considers
timeouts (e.g., [31,4,28,17,6]). In contrast, time and resources in virtually timed ambients are quantitative notions: a pro-
cess which gets more resources typically executes faster. Virtually timed ambients can be understood as locations for the
deployment of processes; the resource requirements of processes executing at a location are matched by resources made
available by the virtually timed ambient. The amount of resources made available by a virtually timed ambient constitutes
its computing power. This amount is determined by the time slices the virtually timed ambient receives from its parent
ambient. A virtually timed ambient that shares the time slices of its parent ambient with another process has less available
time slices to execute its own processes.

The time model used to realize this kind of resource provisioning for virtually timed ambients is here called virtual time.
Virtual time is provided to a virtually timed ambient by its parent ambient, similar to the time slices that an operating
system provisions to its processes. When we consider many levels of nested virtualization, virtual time becomes a local
notion of time which depends on a virtually timed ambient’s position in the location hierarchy. Virtually timed ambients
are mobile, reflecting that virtual machines may migrate between host virtual machines. Observe that such migration affects
the execution speed of processes executed in the virtually timed ambient which moves, in the virtually timed ambients it
leaves, and in the virtually timed ambient it enters. The model of resource provisioning in virtually timed ambients is
inspired by Real-Time ABS [20], but extended to address nested virtualization in our calculus.

To formalize nested virtualization, notions of location mobility and nesting are essential. The calculus of mobile ambients,
originally developed by Cardelli and Gordon [9], captures processes executing at distributed locations in networks such as
the Internet. Mobile ambients model both location mobility and nested locations, which makes this calculus well-suited as
a starting point for our work. Combining these notions from the ambient calculus with the concepts of virtual time and
resource provisioning, the calculus of virtually timed ambients can be seen as a model of nested virtualization. To capture
migration, virtually timed ambients will have capabilities reminiscent of those for mobile ambients, but the capabilities of
virtually timed ambients need to deal with virtual time and the corresponding changes to the resource provisioning. Thus
different locations, barriers between locations, barrier crossing, and their relation to virtual time and resource provisioning
are important for the virtually timed ambients; the number and position of virtually timed ambients available for processing
tasks influences the overall processing time of a program. This allows the effects of, e.g., load balancing and scaling to be
observed using weak timed bisimulation.

Contributions. To study the effects of nested virtualization, the main contributions of this paper can be summarized as
follows:

• we define a calculus of virtually timed ambients, to the best of our knowledge the first process algebra capturing notions
of virtual time and resource provisioning for nested virtualization;

• we define weak timed bisimulation for virtually timed ambients, and show that weak timed bisimulation is equivalent to
reduction barbed congruence [25] with time;

• we define time relaxation for virtually timed ambients as a simulation relation allowing deviation by a bounded amount
of time.

A short version of this paper appeared in the proceedings of WADT 2016 [21].

2. Preliminaries on mobile ambients

Mobile ambients [9] have originally been introduced to represent “administrative domains” for processes. The syntax, as
well as the semantics we consider, is based on [25] and largely unchanged compared to [9]. The main difference compared
to [9] lies in the separation of processes into two levels, as processes and systems. This distinction is used to simplify proofs
in the bisimulation section. Systems characterize the outermost layer of an ambient structure.

The syntax in Table 1 represents the basic calculus for mobile ambients. The inactive process 0 does nothing. The parallel
composition P | Q allows both processes P and Q to proceed concurrently, where the binary operator | is commutative and
associative. The restriction operator (νn)P creates a new and unique name with process P as its scope. In the calculus,
administrative domains for processes, called ambients, are represented by names. A process P located in an ambient named
m is written m[P].

Ambients can be nested, and the nesting structure can change dynamically. A change of the nesting structure is specified
by prefixing a process with a capability. There are three basic capabilities. The input capability in n indicates the willingness
of a process (respectively its containing ambient) to enter an ambient named n, running in parallel with its own ambient;
e.g., k[in n.P] | n[Q] � n[k[P] | Q]. The output capability out n enables an ambient to leave its surrounding (or parental)
ambient n; e.g., n[k[out n.P] | Q] � k[P] | n[Q]. The open capability open n allows an ambient named n at the same level as
the capability to be opened; e.g., k[open n.P | n[Q]] � k[P | Q].
2.1. Syntax

We use the following notational conventions. Parallel composition has the lowest precedence among the operators and
the process E.F .P is read as E.(F .P). For names, the ν-operator acts as a binder and the sets of free names fn of a process

Download English Version:

https://daneshyari.com/en/article/6874866

Download Persian Version:

https://daneshyari.com/article/6874866

Daneshyari.com

https://daneshyari.com/en/article/6874866
https://daneshyari.com/article/6874866
https://daneshyari.com

