
J. Parallel Distrib. Comput. 121 (2018) 1–14

Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

Nontrivial and universal helping for wait-free queues and stacks
Hagit Attiya a, Armando Castañeda b,*, Danny Hendler c

a Department of Computer Science, Technion., Israel
b Instituto de Matemáticas, UNAM., Mexico
c Department of Computer Science, Ben-Gurion University, Israel

h i g h l i g h t s

• Two formalizations of helping are presented: nontrivial and universal.
• Nontrivial helping separates queues and stacks from Test&Set primitives.
• A weaker version of nontrivial helping is introduced and shown necessary in queue implementations.
• Universal helping for queues and stacks is universal: it solves consensus.
• Strongly linearizable queue or stack for n processes requires primitives with consensus number at least n.

a r t i c l e i n f o

Article history:
Received 13 August 2016
Received in revised form 25 April 2018
Accepted 13 June 2018
Available online 4 July 2018

Keywords:
Wait-freedom
Non-blocking
Common2
Consensus number
Helping
Strong linearizability
Shared objects
Queues
Stacks

a b s t r a c t

This paper studies two approaches to formalize helping in wait-free implementations of shared objects.
The first approach is based on operation valency, and it allows us tomake an important distinction between
trivial and nontrivial helping. We show that any wait-free implementation of a queue from Test&Set
requires nontrivial helping. We also define a weaker type of nontrivial helping and show that any wait-
free queue implementation from a set of arbitrary base objects requires it. In contrast, there is a wait-free
implementation of a stack from Test&Set with only trivial helping. These results shed light on the well-
known open question of whether there exists a wait-free implementation of a queue in Common2, and
indicate why it seems to be more difficult than implementing a stack.

The other approach formalizes the helping mechanism employed by Herlihy’s universal wait-free
construction and is based on having an operation by one process restrict the possible linearizations of
operations by other processes. We show that queue and stack implementations possessing such universal
helping can be used to solve consensus. This result can be used to show that a strongly linearizable (Golab
et al., 2011) implementation of a queue or a stack for n processes must use objects that allow to solve
consensus among n or more processes.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

A key component in the design of concurrent applications are
shared objects providing high-level semantics for communication
among processes. For example, a shared queue to which processes
can concurrently enqueue and dequeue allows them to share tasks.
Shared objects are implemented by using Read/Write atomic reg-
isters and base objects providingmore powerful atomic operations,
e.g., Test&Set, Fetch&Add or Compare&Swap. The implementation
is required to be linearizable [17], roughly, ensuring that each
(high-level) operation that completes appears to take effect atom-
ically at some point between its invocation and response.

* Correspondence to: Instituto de Matemáticas, Ciudad Universitaria, Ciudad de
México, 04510, Mexico

E-mail address: armando.castaneda@im.unam.mx (A. Castañeda).

Generally speaking, an implementation of a shared object is
wait-free if any operation on the shared object is guaranteed to ter-
minate after a finite number of steps; the implementation is non-
blocking if it only ensures that some operations complete. Clearly, a
wait-free implementation is nonblocking but not necessarily vice
versa.

The consensus number of a shared object is the maximum
number of processes that can solve consensus using copies of the
object, in addition to Read/Write registers [15]. Objects with an
infinite consensus number, likeCompare&Swap, are universal. This
means that they can be used for obtaining a linearizable wait-free
implementation of any shared object that has a sequential specifi-
cation [15]. This is not the case for objects with finite consensus
number, like Test&Set or stack, whose consensus number is 2,
allowing to solve consensus exactly for two processes. Common2
is the class of objects that includes all objects that have a wait-free

https://doi.org/10.1016/j.jpdc.2018.06.004
0743-7315/© 2018 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jpdc.2018.06.004
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2018.06.004&domain=pdf
mailto:armando.castaneda@im.unam.mx
https://doi.org/10.1016/j.jpdc.2018.06.004


2 H. Attiya et al. / J. Parallel Distrib. Comput. 121 (2018) 1–14

n-process implementation, for any n, from Read/Write registers
and 2-consensus objects [3].Common2 contains some objectswith
consensus number 2, such as Test&Set, Fetch&Add, Swap [3] and
stack [2]. An interesting case is a shared queue, whose consensus
number is 2, but is not known to be in Common2. This is a well-
known open question, first introduced in [3] and later studied
in [2,5,9]. However, there is a simple nonblocking implementation
of a shared queue in Common2, using Test&Set objects [19].

Many implementations of shared objects, especially the wait-
free ones, include one process helping another process to make
progress. The helping mechanism is often a piece of code that is
added to a nonblocking implementation, in order for a process that
is sure to complete its own operation to ‘‘help’’ other processes
make progress so that they eventually terminate their operations
too, making the resulting implementation wait-free.

This article investigates ways of formalizing the notion of help-
ing, with the purpose of being able to separate objects for which
there are wait-free implementations from those with only non-
blocking implementations. We are interested in helping that uses
the same base objects as the nonblocking implementation being
considered, e.g., Fetch&Add or Test&Set, in addition to Read/Write
registers, since nonblocking and wait-free implementations can-
not be separated when helping uses universal objects, like Com-
pare&Swap. An interesting object to study is a shared queue,
which, as already mentioned, has a nonblocking implementation
using Test&Set. A helpingmechanism for a queue using Test&Set, if
one exists,would imply the existence await-free queue implemen-
tation using only Test&Set, showing that queue is in Common2.

Nontrivial helping. We first introduce a notion of helping that is
based on one process determining the return value of an operation
by another process. This formalization relies on the notion of opera-
tion valency [14], i.e., the possible values an operationmight return.
Roughly speaking, there is helping in an implementation if in some
situation, the step of a process makes an undecided operation of
another process become decided on some value. In the context of
specific objects, like queues and stacks, which have a distinguished
‘‘empty’’ value (denoted ⊥), we say that helping is nontrivial if one
process makes an operation of another process decided on a non-
⊥ value. In nontrivial helping, the helping process somehow needs
to acquire the value it gives to the helped process, so it cannot be
returned by another process, in contrast to a ⊥ value that can be
returned by several processes.

Our firstmain result is that nontrivial helping is a distinguishing
factor between queues and stacks implemented from Test&Set.We
prove that any linearizable wait-free queue implementation from
Test&Set must have nontrivial helping. In contrast, we show that
the wait-free stack of Afek et al. [2] (which established that stacks
are inCommon2) does not have nontrivial helping.We stress that if
queues are in Common2, then there is a wait-free implementation
of a queue from 2-process Test&Set. This result is extended to
show that any linearizable wait-free implementation of a queue
must have a weaker version of nontrivial helping that we call
generalized nontrivial helping, regardless of the base objects used
in the implementation.

Universal helping. The article also studies an alternative way to
formalize helping, which is based on restricting the possible lin-
earizations of an operation by the progress of another process.
This kind of helping, which we call universal, formalizes the help-
ing mechanism employed in Herlihy’s universal construction [15].
Intuitively, an implementation has universal helping if for every
execution α, for every long enough extension of it, all pending
operations in α (which might be still pending in the extension) are
linearized, and that linearization order does not change due to any
future steps.

We say that an implementation is readable, if every base object
it uses provides a Read operation that returns its state. We show
that universal helping in nonblocking implementations of readable
queues and stacks is strong enough to solve consensus. Namely,
a nonblocking n-process linearizable readable implementation of
a queue or a stack with universal helping can be used to solve
n-process consensus. We also prove that if the implementation is
wait-free, then a single instance of the implementation is universal:
any shared object with a sequential specification can be wait-
free implemented using one instance of the implementation, and
Read/Write registers.

Interestingly, our results concerning universal helping can be
extended to strongly linearizable implementations of queues or
stacks. Roughly speaking, an implementation is strongly lineariz-
able [12] if once an operation is linearized, its linearization order
cannot be changed in the future. We show that any readable
strongly linearizable nonblocking implementation of a queue or
stack can be used to solve consensus, and if the implementation
is wait-free, even a single copy can be used to wait-free imple-
ment any shared object with a sequential specification. This result
has two implications. The first one is that there is no separation
between wait-freedom and nonblocking for strongly linearizable
readable stack or queue implementations, since consensus is uni-
versal [15]. The second one is that any n-process strongly lineariz-
able and nonblocking or wait-free implementation of a queue or a
stack must be based on base objects whose readable versions have
consensus number n or more. For example, there is no such an
implementation from Test&Set objects, because readable Test&Set
has consensus number 2.

Viewed collectively, our results provide insights onwhy await-
free linearizable implementation for queues from objects with
consensus number 2 has been elusive for a long time. Any such
implementation must incorporate nontrivial helping, however,
this mechanism cannot be too strong, otherwise the resulting
implementation would be able to implement any shared object
for n ≥ 3 processes, which is impossible to do with objects of
consensus number 2.

Related work. Helping has been used in several implementa-
tions and comes in different flavors. The helping mechanism in
Herlihy’s universal construction is a well-known example [15].
Another example is thewait-free linearizable snapshot implemen-
tation [1], in which processes take snapshots while executing up-
date operations to help overlapping processes, which can use any
of these snapshots in order to make progress. There are additional
examples in the literature where helping plays an important role
(e.g. [10,11,16,18,20]).

Recently, a formalization of helping based on the possible lin-
earizations of a given execution was introduced [4]. Under this
notion of helping, both queue and stack implementations must
have helping, hence these shared objects cannot be distinguished
from this perspective. Section 6.1 compares nontrivial helping and
universal helping with the formalization of [4].

Common2 is the family of objects that are wait-free imple-
mentable from 2-consensus for any number of processes [3]. Ini-
tially, it was proven that Test&Set, Fetch&Add, Swap and other
objects are in Common2 [3], and later it was shown that stacks are
in Common2 as well [2]. The question of whether queues belong
to Common2 has received a considerable amount of attention.
Various restrictions of queues are in Common2 [5–7,9,19] but it is
unknown if queues in general are in Common2. Our article studies
this question, for the first time, from the perspective of helping.

It has been observed that linearizability presents some anoma-
lies when used with randomized implementations [12]. One such
anomaly is, roughly, that the expected running time or error
probability of a linearizable randomized implementation cannot
be analyzed under the typical assumption that any high-level



Download	English	Version:

https://daneshyari.com/en/article/6874880

Download	Persian	Version:

https://daneshyari.com/article/6874880

Daneshyari.com

https://daneshyari.com/en/article/6874880
https://daneshyari.com/article/6874880
https://daneshyari.com/

