J. Parallel Distrib. Comput. 121 (2018) 42-52

Contents lists available at ScienceDirect
PARALLEL AND
DISTRIBUTED
COMPUTING

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

An efficient theta-join query processing in distributed environment A

Check for

Wenjie Liu *, Zhanhuai Li e
School of computer, Northwestern Polytechnical University, ShaanXi, Xi’an, 710072, China

HIGHLIGHTS

o Effective Max and Min values based filter strategy for theta-join computing in distributed environment.
e Divide and Merge method for theta-join which reduces network overheads greatly.
e Extensive experiments using real world and synthetic data sets.

ARTICLE INFO ABSTRACT

Article history:
Received 12 March 2016
Received in revised form 3 April 2018

Theta-join query is very useful in many data analysis tasks, but it is not efficiently processed in distributed
environment, especially in large scale data. Although there is much progress in dealing theta-join
with MapReduce paradigm, the methods are either complex which require fundamental changes to

Accepted 5 July 2018 MapReduce framework or only consider the overheads of load balance in the network, when data scale
is large, they will make much computation cost and induce OOM (Out of Memory) errors. In this work,
Keywords: we propose a filter method for theta-join on the purpose of reducing the computation cost and achieving

the minimum execution time in distributed environment. We consider not only the load balance in the
cluster, but also the memory cost in parallel framework. We also propose a keys-based join solution for
multi-way theta-join to reduce the data amount for cross product, then improve the performance of join
efficiency. We implement our methods in a popular general-purpose data processing framework, Spark.
The experimental results demonstrate that our methods can significantly improve the performance of
theta-joins comparing with the state-of-art solutions.

Parallel distributed framework
Theta-join algorithm

Query optimization

Large scale data processing

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Large scale data processing related to analytic queries involves
theta-join operations, which is becoming one of the most impor-
tant challenges in recent years. Theta-join is defined as a binary
function 6 which belongs to {<, <, =, >, >, <>}. MapReduce is a
prevalent framework to process large scale data in parallel, and can
be used to process join operations. Due to the inherent limitations
of key-equal feature, it can be easily used to support equal joins,
but cannot be directly used for theta-joins.

Recently, there are a few works that focus on processing theta-
join in MapReduce framework. 1-bucket-theta is a method pro-
posed to evaluate one single theta-join in one MapReduce Job [11].
Its main idea is to balance the workload among reducers. It par-
titions the cross-product results of two input tables for theta-
join with many rectangle regions of bounded size. The records
in one region are distributed to one reducer, as each region in-
cludes almost same amounts of data, each reducer will receive

* Corresponding author.
E-mail addresses: liuwenjie@nwpu.edu.cn (W. Liu), lizhh@nwpu.edu.cn (Z. Li).

https://doi.org/10.1016/j.jpdc.2018.07.007
0743-7315/© 2018 Elsevier Inc. All rights reserved.

the average workload, thus the parallelism of the system can be
achieved. A multi-way theta-join is also processed by using 1-
bucked-theta [18]. The method implements a chain-typed theta-
join by using Hilbert curve. As Hilbert curve requires same scale
for data sets, it cannot be used for join tables with different size.
A randomized algorithm named Strict-Even-Join (SE]) is designed
to solve the multi-way theta-joins in a single MapReduce job [19].
It uses Lagrangian method to compute the approximate fragments
of each relation and minimizes the communication cost between
map and reduce phases. But the partition idea is as the same
as 1-bucket-theta. To reduce the high I/O cost of intermediate
results, a method which uses just two MRJs (MapReduce Jobs)
to implement multi-way theta-joins in MapReduce has been pro-
posed, multi-way theta-join is decomposed into a non-equal-join
and a multi-way equal-join. But in each theta-join processing, it
is also processed by 1-bucket-theta [15]. The latest work about
theta-join is based on sorting, permutation-arrays and bit-arrays.
It puts columns to be joined in sorted arrays and uses permutation
arrays to encode positions of tuples in one sorted array w.r.t. the
other sorted array [9]. This method needs fundamental changes of
parallel frameworks, so it cannot be easily used in real applications.

https://doi.org/10.1016/j.jpdc.2018.07.007
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2018.07.007&domain=pdf
mailto:liuwenjie@nwpu.edu.cn
mailto:lizhh@nwpu.edu.cn
https://doi.org/10.1016/j.jpdc.2018.07.007

W. Liu, Z. Li /]. Parallel Distrib. Comput. 121 (2018) 42-52 43

From above works, we notice that 1-bucket-theta is the basis
for most of theta-join and multi-way theta-join processing, it is
widely used in many algorithms. Although it is useful and efficient,
it is only considering the load balance among reducers, and not
considering how to reduce the computation cost. When input
tables are very large, it will gain low efficiency.

In our paper, we propose a method which is also based on
1-bucket-theta, but do an efficient filter to prune much irrele-
vant records before cross product. We propose a key-based filter
method which uses only the join attributes. The method is called
max and min values based filter strategy (MMF method). We use
the strategy to filter the input data records before we do cross
product, which is widely used in processing theta-joins. As known
to all, cross product is a time-consuming operation, especially for
large data in a parallel framework, too many intermediate results
may make OOM errors occur. So deleting useless records which do
not contribute to the final results will reduce the memory cost and
copied data transferred in network. We also apply our method into
multi-way theta-join and design a key-based join strategy. We im-
plement our methods and the baseline method of 1-bucket-theta
in a prevalent distributed data processing framework-Spark, and
conduct extensive experiments on large scale real and synthetic
data sets. The results show our method outperforms 1-bucket-
theta for theta-join queries.

The contributions of our work are summarized as follows:

e We proposed a max and min values based filter method for
computing theta-join in a distributed framework. It uses the
max and min values of the join attributes to filter useless
data which are irrelevant to the final results from the in-
put data sets, and then uses the idea of 1-bucket-theta to
evenly partition the cross product results among reducers
to achieve load balance from the parallel framework. It
effectively reduces the memory cost and network overhead,
and therefore improves the join efficiency.

e We propose a new join strategy for multi-way theta-join,
which does the cross product only on the join attributes,
then use equi-join to merge other output attributes, which
greatly reduced the intermediate results of cross product
and improved computation cost.

e We compare our methods with the baseline method 1-
bucket-theta and SQL-based query engine in a distributed
framework, the results show that our solution is more fea-
sible and effective.

The remainder of the paper is organized as follows. In Section 2,
we briefly review the MapReduce computing paradigm and the
solution for binary theta-join. Section 3 introduces preliminary
concepts and definition. Section 4 gives a presentation of the pro-
posed approach, Section 5 analyzes the cost for binary and multi-
way theta-join, then proposes the optimized versions of these
two algorithms, experiments evaluation is described in Section 6.
We discuss related work in Section 7 and conclude our work in
Section 8.

2. Theta-join in MapReduce

In this section, we first present the MapReduce paradigm and
how joins will be evaluated on it, then we briefly review the basic
idea of 1-bucket-theta method and point out the limitations of it.

2.1. Joins in MapReduce

MapReduce [6] is a popular parallel computation framework, in
which data are expressed as (key, value) pairs. It includes two main
functions which are Map and Reduce. The map function transforms
the input pair (kq, v1) to an output of (k;, v2). The output will be

S
[[2]3]4a]s5]6]

()

(o[o] o] w[o] -]

Fig. 1. The idea of 1-bucket-theta.

partitioned by hashing function to different reducers, then each
reducer will take the input (k,, list(v,)) and perform user specified
computation to reduce the values of k, then output the final results.

Joins in MapReduce includes equi-join and non-equi-join
(called theta-join). Equi-join is easy to implement because MapRe-
duce is a key-value based programming model, whose nature is
key-equality and can join data sets on the keys with high perfor-
mance. But as to theta-join, due to inherent limitations, there exists
many problems such as load balance, data skew, and memory
shortage. 1-bucket-theta is an effective way to solve binary theta-
join in MapReduce framework, it uses a randomized algorithm
to partition the cross product results to different reducers, which
ensures that each reducer can process near same amount of data.
Here we give a brief review of 1-bucket-theta.

2.2. 1-bucket-theta

The method of 1-bucket-theta builds up a theta-join model
between two data sets S and R with a join matrix M, which can
represent and implement any theta-join queries. The data sets that
will be joined have |S| and |R| records, and the cross product has
|R| x |S| records. There are k reducers in the parallel framework, the
method uses randomized algorithm to partition the cross product
to k squares and each square is distributed to one reducer. The side
length [of square is as follows:

I=/IR| x |S|/k (1

Fig. 1 shows idea of 1-bucket-theta.

In Fig. 1, three reducers will receive 12 tuples, respectively,
and each reducer joins these records and filters them according
to the join condition, such as RB < S.B. 1-bucket-theta requires
minimal statistical information, which are the cardinalities of the
input tables.

The idea of 1-bucket-theta is from the load balance point of
view to achieve minimized maximum reducer input. But the tuples
processed in each reducer may contain useless pairs that does not
contribute to the final results. If we can filter part of the useless
pairs in the input data sets before we perform the algorithm, we
can achieve better efficiency.

3. Preliminary

In this section, we formally define the binary theta-join and
multi-way theta-join query problems. To improve the multi-way
theta-join query efficiency, we divide it into two kinds according
to the output attributes.

Download English Version:

https://daneshyari.com/en/article/6874884

Download Persian Version:

https://daneshyari.com/article/6874884

Daneshyari.com

https://daneshyari.com/en/article/6874884
https://daneshyari.com/article/6874884
https://daneshyari.com

