
J. Parallel Distrib. Comput. 121 (2018) 53–70

Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

The Open Computing Abstraction Layer for Parallel Complex Systems
Modeling on Many-Core Systems
Donato D’Ambrosio a,*, Alessio De Rango a, Marco Oliverio b, Davide Spataro c,
William Spataro a, Rocco Rongo a, Giuseppe Mendicino d, Alfonso Senatore d

a Department of Mathematics and Computer Science, University of Calabria, Rende, Italy
b DIMES Department, University of Calabria, Rende, Italy
c ASML building 23, HTC 52, High Tech Campus 52, 5656 AG Eindhoven, Netherlands
d Department of Environmental and Chemical Engineering, University of Calabria, Rende, Italy

h i g h l i g h t s

• Domain Specific Language for structured grids modeling.
• MPI/OpenMP/OpenCL implementations for execution on heterogeneous systems.
• Efficient built-in data structures and parallel algorithms.
• High computational performances achieved.
• Possibility to devise the best parallel hardware platform for execution.

a r t i c l e i n f o

Article history:
Received 2 May 2017
Received in revised form 14 February 2018
Accepted 2 July 2018
Available online 17 July 2018

Keywords:
Complex systems modeling
Extended cellular automata formalism
OpenMP
OpenCL
GPGPU computing
MPI

a b s t r a c t

This article introduces OpenCAL, a new open source computing abstraction layer for multi- and many-
core computing based on the Extended Cellular Automata general formalism. OpenCAL greatly simplifies
the implementation of structured grid applications, contextually making parallelism transparent to the
user. Different OpenMP- and OpenCL-based implementations have been developed, together with a
preliminary MPI-based distributed memory version, which is currently under development. The system
software architecture is presented and underlying data structures and algorithms described. Numerical
correctness and efficiency have been assessed by considering the SciddicaT Computational FluidDynamics
landslide simulationmodel as reference example. Eventually, a comprehensive study has been performed
to devise the best platform for execution as a function of numerical complexity and computational domain
extent. Results obtained have highlighted theOpenCAL’s potential for numericalmodels development and
their execution on the most suitable high-performance parallel computational device.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Scientific Computing [44] is a broad and constantly growing
multidisciplinary research field that uses formal paradigms to
study complex problems and solve them through simulation by
using advanced computing capabilities.

* Correspondence to: Department of Mathematics and Computer Science, Uni-
versity of Calabria, Cubo 30B - Via Ponte Pietro Bucci, I-87036 Rende, Italy.

E-mail addresses: donato.dambrosio@unical.it (D. D’Ambrosio),
alessio.derango@mat.unical.it (A. De Rango), m.oliverio@dimes.unical.it
(M. Oliverio), davide.spataro@asml.com (D. Spataro), william.spataro@unical.it
(W. Spataro), rocco.rongo@unical.it (R. Rongo), giuseppe.mendicino@unical.it
(G. Mendicino), alfonso.senatore@unical.it (A. Senatore).

Different formal paradigms have been proposed to provide the
abstraction context in which problems are formalized. Partial Dif-
ferential Equations (PDEs) were probably the first to be largely em-
ployed for describing a wide variety of phenomena. Unfortunately,
PDEs can be analytically solved only for a small set of simplified
problems [56] and Numerical Methods have to be employed to
obtain approximate solutions for real situations. Among them, the
Finite Differences Method (FDM) was one of the first considered,
still currently employed, to address a wide variety of phenomena
such as acoustics [17,13], heat [65,69], computational fluid dynam-
ics (CFD) [18,36], and quantum mechanics [47,39].

Besides other solutions proposed for numerically approximat-
ing PDEs like, for instance, Finite Elements and Finite Volume
Methods, further formal paradigms were more recently proposed
for modeling complex systems as result of studies in Computer

https://doi.org/10.1016/j.jpdc.2018.07.005
0743-7315/© 2018 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jpdc.2018.07.005
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2018.07.005&domain=pdf
mailto:donato.dambrosio@unical.it
mailto:alessio.derango@mat.unical.it
mailto:m.oliverio@dimes.unical.it
mailto:davide.spataro@asml.com
mailto:william.spataro@unical.it
mailto:rocco.rongo@unical.it
mailto:giuseppe.mendicino@unical.it
mailto:alfonso.senatore@unical.it
https://doi.org/10.1016/j.jpdc.2018.07.005


54 D. D’Ambrosio et al. / J. Parallel Distrib. Comput. 121 (2018) 53–70

Science. Among them, Cellular Automata (CA) [74] are Turing-
equivalent [21,22] parallel computational models. CA are widely
studied from a theoretical point of view [77,51,78,60], and their
application domains vary from Artificial Life [50,10] to Computa-
tional FluidDynamics [41,57,46,2], besidesmany others. In the 80s,
an extension of the original CA formalism was proposed to better
model and simulate a specific set of complex phenomena [45].
Such an extension is known as Complex or Multi-Component
Cellular Automata and was applied to the simulation of debris
flows [28,6], lava flows [32,33,62,31], pyroclastic flows [5,24],
forest fires spreading [4,8], hydrologic and eco-hydrologic mod-
eling [58,66,59,16], soil erosion [27], crowd dynamics [52,76,75],
urban dynamics [12], besides others. In this paper we will refer
such an extension of the original CA paradigm as Extended Cellular
Automata (XCA).

Independently from the adopted formal paradigm, the sim-
ulation of complex systems often requires Parallel Computing.
OpenMP is the most widely adopted solution for parallel pro-
gramming on shared memory computers [19]. It fully supports
parallel execution on multi-core CPUs and, starting from the 4.0
specification, also includes support for accelerators like graphic
processing units (GPUs) or Xeon Phi co-processors. Unfortunately,
compilers like gcc currently do not fully support the OpenMP
most recent specifications and, in practice, OpenMP-based appli-
cations still mainly run on CPUs [62,3,64]. However, in recent
years, general purpose computing on graphic processing units
(GPGPU), which exploits GPUs and many-core co-processors for
general purpose computation, has gained wide acceptance as an
alternative solution for high-performance computing, resulting in
a rapid spread of applications in many scientific and engineering
fields [63]. Most implementations are currently based on Nvidia
CUDA (see e.g., [11,29,37,30]), one of the first platforms proposed
to exploit GPUs computational power on Nvidia hardware. An
open alternative to CUDA is OpenCL [71], an Application Program
Interface (API) originally proposed by Apple and currently man-
aged by Khronos Group for parallel programming on heteroge-
neous devices like CPUs, GPUs, Digital Signal Processors (DSPs),
and Field-ProgrammableGate Arrays (FPGAs). Interest inOpenCL is
continuously growing andmany applications can already be found
in literature [54,9,38,14]. However, an OpenCL parallelization of
a scientific application is often a non-trivial task and, in many
cases, requires a thorough re-factorization of the source code. For
this reason, many computational layers were proposed, which
make many-core co-processors computational power easier to be
exploited. For instance, ArrayFire [55] is a mathematical library
for matrix-based computation such as linear algebra, reductions,
and Fast Fourier transform; clSpMV [72] is a sparse matrix vector
multiplication library; clBlas [20] is an OpenCL parallelization of
the Blas linear algebra library. Examples of higher level compu-
tational layers, which provide the abstraction of formal compu-
tational paradigms, are: OPS [68,48] and OP2 [43,67], which are
open-source frameworks for the execution of structured and un-
structured grid applications, respectively, on clusters of GPUs or
multi-core CPUs; AQUAgpusph [15], which is a smoothed-particle
hydrodynamics solver; ASL [1], an accelerated multi-physics sim-
ulation software based, among others, on the Lattice Boltzmann
Method; CAMELot [35,34] and libAuToti [70], which are a propri-
etary simulation environment and an efficient parallel library for
XCA model development, respectively.

In this article we introduce OpenCAL (Open Computing Ab-
straction Layer), a new open source parallel computing abstraction
layer for scientific computing. It provides the Extended Cellular
Automata general formalism as a Domain Specific Language, al-
lowing for the straightforward parallel implementation of a wide
range of complex systems. Cellular Automata, Finite Differences

and, in general, other structured grid-based methods are there-
fore supported. Different versions of the library allow to exploit
both multi- and many-core shared memory devices, as well as
distributed memory systems. Specifically, OpenMP- and OpenCL-
based implementations have been developed, both of them pro-
viding optimized data structures and algorithms to speed-up the
execution and allowing for a transparent parallelism to the user.
A MPI-based implementation is also currently under development
and allows to exploit many-core accelerators on interconnected
systems.

Among the above cited software, OPS, ASL and CAMELot prob-
ably are the most similar to OpenCAL in terms of modeling and
development approach, and could be considered as possible al-
ternatives to the library proposed in this paper. In particular, OPS
provides a straightforward Domain Specific Language for struc-
tured grid-based modeling, even if it does not refer to any specific
abstract computational formalism. Its main characteristic consists
in allowing to obtain different parallel versions of a computa-
tional model starting from its serial implementation, thanks to
a seamless code-generator approach. Both MPI-based distributed
memory and CUDA/OpenCL many-core versions can be obtained
in this way, with a minimal effort by the developer. Conversely,
ASL provides different higher level modeling abstractions among
which the Lattice Boltzmann Method, that is eventually a Cel-
lular Automata-based paradigm. Nevertheless, it currently does
not allow for parallel execution on distributed memory systems,
which can be a great limitation in some cases. Eventually, CAMELot
offers an integrated simulation environment for XCA development
and allows for parallel execution on both shared and distributed
memory systems thanks to the message passing paradigm, not
permitting however the exploitation of modern many-core de-
vices. With respect to the above cited software, OpenCAL provides
both the higher CAMELotmodeling approach and, similarly to OP2,
allows for the execution on a wide range of shared and distributed
parallel platforms (even if by adopting a classic library approach).
In addition, OpenCAL provides different embedded strategies and
optimization algorithms which allow to progressively improve
the computational performance of different kinds of models and
simulations.

In the following, the OpenCAL architecture is presented and the
OpenMP- and OpenCL-based parallel implementations described.
We also present and discuss the implementation of a first simple
example of application for multi- and many-core devices to show
how straightforward the OpenCAL-based model development is.
We therefore consider the SciddicaT XCA landslide simulation
model [7] as a more complex reference example for correctness
and computational performance evaluation on multi-core CPUs,
many-core GPUs, and also on a test multi-node GPU-based system.
Specifically, we refer to three different versions of SciddicaT , which
progressively exploit OpenCAL built-in features and, for each of
them, we propose different implementations based on the serial
and parallel versions of the library. Eventually, results of a further
study performed to devise the best platform for execution, depend-
ing on themodel’s computational intensity and the domain extent,
is presented. A general discussion concerning OpenCAL and future
outcomes concludes the paper.

2. An OpenCAL overview: Software architecture, main specifi-
cations and a first example of application

In this section we describe the software architecture, main
structures and underlying algorithms of the OpenCAL library, be-
sides a first example of application to highlight how easy model
development is. The serial version of the library will be simply
referred as OpenCAL in the following, while OpenCAL-OMP and
OpenCAL-CL will refer to the OpenMP- and OpenCL-based par-
allelizations, respectively. Eventually, the preliminary distributed



Download English Version:

https://daneshyari.com/en/article/6874886

Download Persian Version:

https://daneshyari.com/article/6874886

Daneshyari.com

https://daneshyari.com/en/article/6874886
https://daneshyari.com/article/6874886
https://daneshyari.com

