
J. Parallel Distrib. Comput. 120 (2018) 89–100

Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

Big data transfer optimization through adaptive parameter tuning
Engin Arslan a,*, Bahadir A. Pehlivan a, Tevfik Kosar b

a University of Nevada, Reno, 1664 N Virginia St, Reno, NV 89557, United States
b University at Buffalo, SUNY, 338 Davis Hall, Buffalo, NY 14260, United States

h i g h l i g h t s

• Application-level transfer parameters can improve transfer throughput significantly.
• Dataset partitioning considerably affects data transfer throughput for mixed datasets.
• Adaptive protocol tuning is necessary to adjust transfer parameters to network specific conditions.

a r t i c l e i n f o

Article history:
Received 13 September 2017
Received in revised form 30 April 2018
Accepted 4 May 2018

Keywords:
Application-level protocol tuning
Throughput optimization
Wide-area data transfers

a b s t r a c t

Obtaining optimal data transfer performance is of utmost importance to today’s data-intensive distributed
applications and wide-area data replication services. Tuning application-layer protocol parameters such
as pipelining, parallelism, and concurrency can significantly increase efficient utilization of the available
network bandwidth as well as the end-to-end data transfer performance. However, determining the best
settings for these parameters is a challenging problem, as network conditions can vary greatly between
sites and over time. Poor protocol tuning can cause either under- or over-utilization of network resources
and thus degrade transfer performance. In this paper, we present three novel algorithms for application-
layer parameter tuning and transfer scheduling to maximize transfer throughput in wide-area networks.
Our algorithms use heuristics to tune the level of control channel pipelining (for small file optimization),
the number of parallel data streams per file (for large file optimization), and the number of concurrent file
transfers to increase I/O throughput (for all types of files). The proposed algorithms improve the transfer
throughput up to 10x compared to the baseline and 7x compared to the state-of-the-art solutions. We
also propose adaptive tuning to adjust the values of parameters based on real-time observations. The
results show that adaptive tuning can further improve transfer throughput by up to 24% compared to the
heuristic approach.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Despite the increasing availability of high-speedwide-area net-
works and the use of modern data transfer protocols designed for
high performance, file transfers in practice attain only a fraction of
theoretical maximum throughput, leaving networks underutilized
and users unsatisfied. This fact is due to a number of confound-
ing factors, such as under-utilization of end-system CPU cores,
low disk I/O speeds, server implementations not taking advantage
of parallel I/O opportunities, background traffic at inter-system
routing nodes, and unsuitable system-level tuning of networking
protocols.

The effects of some of these factors can be mitigated to varying
degrees through the use of techniques such as control-channel

* Corresponding author.
E-mail address: earslan@unr.edu (E. Arslan).

pipelining, transport-layer parallelism, and concurrent transfers
using multiple data channels. Pipelining targets the problem of
transferring a large numbers of small files [10,12,19]. In most
control channel-based transfer protocols, transfer of a file must
complete and be acknowledged before the next file can be re-
quested. This may cause a delay of more than one RTT between
individual file transfers especially in cases where the client is
located far from source and destination (i.e., third-party transfers).
With pipelining, multiple transfer commands can be queued up
at the server, reducing the delay between transfer completion
and receipt of the next command from the client. Parallelism
sends different portions of the same file over parallel data streams
(typically TCP connections), and can achieve high throughput by
aggregating multiple streams [15,35,41]. Concurrency refers to
transferring multiple files simultaneously using different control
anddata channels and is especially useful for increasing I/O concur-
rency in parallel disk systems [21,27,39]. The degree towhich these
techniques are utilized, however, has the potential to negatively

https://doi.org/10.1016/j.jpdc.2018.05.003
0743-7315/© 2018 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jpdc.2018.05.003
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2018.05.003&domain=pdf
mailto:earslan@unr.edu
https://doi.org/10.1016/j.jpdc.2018.05.003


90 E. Arslan et al. / J. Parallel Distrib. Comput. 120 (2018) 89–100

impact the performance of the transfer and the network as a
whole. Too little use of one technique, and the network might be
underutilized; too much, and the network might be overburdened
to the detriment of the transfer and other users. Furthermore, the
optimal level of usage for each technique varies depending on the
network and end-system conditions, meaning no single parameter
combination is optimal for all different scenarios.

We propose dynamic transfer optimization algorithms to deter-
mine which combination of parameters is ‘‘just right’’ for a given
transfer task. Main contributions of this paper are: (i) optimiza-
tion of dataset clustering for heterogeneous datasets that include
both small and large files; (ii) a heuristic approach to estimate
parameter values to be used in transfer; (iii) three novel transfer
scheduling algorithms to improve overall transfer throughput; and
(iv) an adaptive parameter tuning algorithm to decide optimal
values in the run-time. We have run extensive experiments using
real and synthetic datasets in both wide- and local-area networks.
The experimental results are very promising, and our algorithms
outperform other existing solutions in this area.

The remainder of this paper is organized as follows. The next
section presents the related work. Section 3 introduces protocol
tuning and scheduling algorithms we propose. Section 4 presents
the performance evaluation results of our algorithms. Section 5
concludes the paper with our discussion and future directions.

2. Related work

Several solutions are proposed to improve utilization of a
single path by means of parallel streams [4,14,29,38], pipelin-
ing [8,10,12], and concurrent transfers [24,26,27,36]. Several file
transfer tools tried to statically tune a subset of these parameters
in an effort to improve the end-to-end data transfer through-
put [20,22,23,25,40]. Liu et al. [27] developed a tool to determine
the optimal number of concurrent file transfers based on observed
transfer throughput. While the presented performance increase
is significant, setting the number of concurrent transfers just by
considering transfer throughput would lead to opening too many
processes and connections hence overloads the end system and
network. Thus, both transfer throughput and system overhead
needs to be considered when tuning concurrency. We propose a
dynamic tuning algorithm for concurrency in Section 4.3 using a
cost functionwhich rewards high throughput and low concurrency
values.

We developed three highly-accurate models [18,42,43] which
would require as few as three sampling points to provide accurate
predictions for the optimal parallel stream number. These mod-
els have proved to be more accurate than existing similar mod-
els [16,29]which lack in predicting the parallel streamnumber that
gives the peak throughput. We also have developed algorithms
to determine the best sampling size and the best sampling points
for data transfers by using bandwidth, Round-Trip Time (RTT), or
Bandwidth-Delay Product (BDP) [37].

In addition, several approaches are proposed to tune multiple
transfer parameters at the same time using heuristics [3,7], offline
modeling [5,6,30], and adaptive [34] techniques. Globus Online [3]
sets pipelining, parallelism, and concurrency parameters to pre-
determined values for three different file sizes (i.e., less than 50MB,
larger than 250MB, and in between). However, the protocol tun-
ing Globus Online performs is non-adaptive; it does not change
depending on dataset and network settings and does not perform
well in various scenarios. In our earlier work [7], we proposed
a heuristic approach that relies on dataset and network settings
(shown in Algorithm 1). We extend [7] by (i) investigating the
impact of dataset partitioning on transfer throughput; (ii) run-
ning extensive experiments in different networks using real-word
datasets; and (iii) improving the heuristic solution by enhancing

with adaptive tuning to adjust the value of concurrency in real-
time.

Modeling based approaches use historical data to derivemodels
to define a relationship between transfer parameters and through-
put. HARP [5,6] derives polynomial models to relate application-
layer transfer parameter to transfer throughput and solves these
models for maximum throughput to find the corresponding val-
ues for transfer parameters. While it can obtain close-to-optimal
throughput results, it requires historical data to contain up-to-date
information for different network conditions (such as background
traffic) which hinders its deployment.

PCP [34] tries to identify optimal values of transfer parameters
in the run-time similar to our adaptive tuning approach. However,
there are several key differences between PCP and this work in-
cluding but not limited to: (i) PCP partitions dataset into a fixed
number of clusters (i.e., five), whereas we analyze impact of creat-
ing different number of clusters in this work and show that using
only two clusters is sufficient to benefit from dataset partitioning;
(ii) PCP transfers each file cluster separately whereas our MC and
ProMC algorithms transfer multiple clusters simultaneously to
mitigate the effect of small file transfers over average throughput;
and (iii) PCP’s adaptive search algorithm is rather simple compared
to our multi-phase quick search algorithm due to which it spends
more time in search phase thus resulting in poor overall transfer
throughput.

Other approaches aim to improve throughput by opening flows
over multiple paths between end-systems [17,32], however there
are cases where individual data flows fail to achieve optimal
throughput because of end-system bottlenecks.

3. Dynamic protocol tuning algorithms

Pipelining, parallelism, and concurrency play a significant role
in affecting achievable transfer throughput. However, setting the
optimal levels for these parameters is a challenging problem, and
poorly-tuned parameters can either cause underutilization of the
network or overburden the network and degrade the performance
due to increased packet loss, end-system overhead, and other
factors. These transfer parameters can be set to any integer values,
however system administrators may define upper limits as too
large values may cause system to crash. If not set, the default
values (0,1,1) are used for pipelining, parallelism, and concurrency,
respectively. Pipelining value 0 means that no outstanding com-
mand will be stored at the end servers. Parallelism value 1 means
that only one data channel will be used transfer each file. Finally,
concurrency value 1 will enforce to transfer one file at any given
time.

3.1. Impact of pipelining, parallelism and concurrency on transfer
throughput

To analyze the effects of pipelining, parallelism and concur-
rency on the transfer of different file sizes, we initially conducted
experiments for each of the parameters separately, as shown in
Figs. 1 and 2.We run our experiments on XSEDE [33] and LONI [28]
production-level high-bandwidth networks whose specifications
are given in Table 1. Although both of the networks have 10
Gbps network bandwidth between sites, XSEDE provides higher
throughput in end-to-end (disk-to-disk) transfers despite high RTT
between its sites. This is mainly due to better storage I/O perfor-
mances at the XSEDE sites.

We generated five datasets for five different file sizes and trans-
ferred each dataset, only changing one parameter (i.e., pipelining,
parallelism or concurrency) at a time to observe the individual
effect of each parameter. Then, we introduced other parameters
one by one. Figs. 1(a) and 2(a) show that pipelining can increase



Download English Version:

https://daneshyari.com/en/article/6874898

Download Persian Version:

https://daneshyari.com/article/6874898

Daneshyari.com

https://daneshyari.com/en/article/6874898
https://daneshyari.com/article/6874898
https://daneshyari.com

