
Please cite this article in press as: G. Zhang, et al., Accelerating breadth-first graph search on a single server by dynamic edge trimming, J. Parallel Distrib. Comput. (2017),
https://doi.org/10.1016/j.jpdc.2017.09.007.

J. Parallel Distrib. Comput. () –

Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

Accelerating breadth-first graph search on a single server by dynamic
edge trimming
Guangyan Zhang *, Shuhan Cheng, Jiwu Shu, Qingda Hu, Weimin Zheng
Department of Computer Science and Technology, Tsinghua University, Beijing, China

h i g h l i g h t s

• A new approach that performs breadth-first graph search efficiently on a single server.
• The impact of graph diameters (e.g., web graphs and social graphs) on the performance of breadth-first graph search.
• The benefit of dynamic edge trimming: lower memory consumption, fewer computing tasks, and fewer disk I/Os.
• A follow-up improvement according to the feedbacks we got during the presentation of FastBFS on IPDPS 2016.

a r t i c l e i n f o

Article history:
Received 28 July 2017
Accepted 17 September 2017
Available online xxxx

Keywords:
Graph computing
In-memory computing
I/O optimization
BFS

a b s t r a c t

Breadth-first graph search (a.k.a., BFS) is one of the typical in-memory computing models with com-
plicated and frequent memory accesses. Existing single-server graph computing systems fail to take
advantage of access pattern of BFS for performance optimization, hence suffering from a lot of extra
memory latencies due to accessing no longer useful data elements of a big graph as well as wasting
plenty of computing resources for processing them. In this article, we propose FastBFS, a new approach
that accelerates breadth-first graph search on a single server by leverage of the access pattern during
iterating over a big graph. First, FastBFS uses an edge-centric graph processing model to obtain the high
bandwidth of sequential memory and/or disk access without expensive data preprocessing. Second, with
a dynamic and asynchronous trimming mechanism, FastBFS can efficiently reduce the size of a big graph
by eliminating useless edges in parallel with the computation. Third, FastBFS schedules I/O streams
efficiently and can attain greater parallelism if an additional disk is available. We implement FastBFS
by modifying the X-Stream system developed by EPFL. Our experimental results show that FastBFS can
attain speedups of up to 7.9× and 10.4× in the computing speed compared with X-stream and GraphChi
respectively. With an additional disk, the performance can be further improved.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

1.1. Motivation

Many large scale applications use graph structure to repre-
sent their data, such as web search, social networks [33], chem-
istry [34] and so on. In order to analyze those data efficiently, the
research community is paying more and more attention to big
graph computing. Many big graph computing approaches partition
the storage and computation over a cluster made up of plenty of
machines. There are many distributed graph processing systems
such as Pregel [22], PowerGraph [9], GraphX [10] and so on. These
systems suffer from problems such as load imbalance [14], high
fault tolerance costs [32], etc. Recent studies on single server

* Corresponding author.
E-mail address: gyzh@tsinghua.edu.cn (G. Zhang).

graph systems [11,17,19,26,35,36] indicate that with deliberately
designed data representation and scheduling strategies, a single
machine can solve very big graph problems with competitive per-
formance. Moreover, with faster single server computing, same
graph problems can be solved with fewer machines in a shorter
time. Among big graph applications, breadth-first search (a.k.a.,
BFS) is a fundamental graph traversal algorithm. BFS is one of the
building blocks of many graph analysis algorithms, e.g., shortest-
paths, hence attracts lots of efforts on optimizing its performance
on a variety of architectures [1,25]. Moreover, BFS is used as a rep-
resentative graph traversal kernel [27] in theGraph500 benchmark
suite [24], a metric for evaluating supercomputer performance.

BFS computation along with other graph applications share the
same poor locality problem, which results in expensive memory
accesses in shared-memory systems and frequent communications
in clusters [2]. The lack of locality tends to have more significant
influence for BFS in its low computation density phases, in which

https://doi.org/10.1016/j.jpdc.2017.09.007
0743-7315/© 2017 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jpdc.2017.09.007
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
mailto:gyzh@tsinghua.edu.cn
https://doi.org/10.1016/j.jpdc.2017.09.007

Please cite this article in press as: G. Zhang, et al., Accelerating breadth-first graph search on a single server by dynamic edge trimming, J. Parallel Distrib. Comput. (2017),
https://doi.org/10.1016/j.jpdc.2017.09.007.

2 G. Zhang et al. / J. Parallel Distrib. Comput. () –

Fig. 1. A simple BFS example.

unnecessary data access takes much more time than actual com-
puting. Fig. 1 presents an example of BFS execution, where the use-
ful edges keep reducing alongwith the traversal. Due to the limit of
memory capacity, BFS performed over a large scale graph is often
organized as several rounds of graph traversals [17,26]. Graphs
are divided into separated partitions for scaling. A typical iteration
of graph traversing procedure begins with loading the graph into
memory one partition by another, generates updates from source
vertices to destination vertices, applies changes to those vertices,
and finally ends with writing the updated state back to the disk.
We can see from Fig. 1 that vertices in the graph converge rapidly
as the process goes on. This makes a large portion of the accessed
edges useless for further computation. Based on this observation,
we can exploit the convergencemanners of this graph algorithm to
improve the execution efficiency. By trimming sub-graphs that are
no longer relevant to the subsequent computation, BFS traversal
can benefit from lower memory consumption, fewer computing
tasks, and fewer disk I/Os.

GraphChi and X-Stream are two representatives of graph com-
puting systems over a single server. GraphChi partitions large
scale graphs into disjoint vertex intervals and corresponding edge
shardings. With each edge sharding sorted by the source vertices,
GraphChi utilizes a parallel sliding window method to make the
disk access sequential. However, the computing-intensive sort-
ing operation needed for every sharding is very time-consuming.
X-Stream is an edge-centric single server graph system. It scatters
edges from the source vertices to generate updates in a streaming
manner, and apply these updates in the gather phase. Thanks to the
sequential access pattern of data streaming, X-Streamcan compute
edges and updates from the disk obtaining the maximum disk
bandwidth. However, X-Stream cannot perform well on traversal
algorithms [26] because of a large amount of irrelevant I/O and
computations processing the converged vertices and their corre-
sponding edges.

1.2. Our contributions

In this article, we propose FastBFS, a new approach that per-
forms breadth-first graph search efficiently on a single server. First,
FastBFS traverses the graph using an edge-centric graph processing
model. Therefore it can obtain the high bandwidth of sequential
memory and/or disk access without expensive preprocessing. Sec-
ond, FastBFS eliminates useless edges in parallel with the graph
traversal at a very low cost. With an asynchronous trimming
mechanism, it can reduce the size of big graphs efficiently and im-
prove the overall performance. Moreover, FastBFS uses a trimming
trigger to dynamically turn on/off the edge trimming to improve
the efficiency. Third, if an additional disk is available, FastBFS can
schedule I/O streams efficiently in a parallelized manner, which
improves the performance even more.

We implement FastBFS by modifying X-Stream [26], an open-
source graph computing system developed by EPFL. We evaluate

the performance of FastBFS by a comparison with X-Stream and
GraphChi, two representative graph computing systems over a
single server. Our experimental results show that FastBFS can
attain speedups of up to 7.9× and 10.4× in the computing speed
compared with X-stream and GraphChi respectively. With an ad-
ditional disk, FastBFS can get even better speedups respectively.

1.3. Differences from our prior work

This article is based on our prior work presented at the 2016
IEEE International Parallel and Distributed Processing Symposium
(IPDPS’16) [6]. In this article, we provide the following important
and new materials beyond the prior version.

1. We extend the coverage of the data sets in the experiments
by including more real-world graphs, especially those with
large diameters, such as web graphs. This is a follow-up
improvement according to the feedbacks we got during the
presentation of FastBFS on IPDPS 2016.

2. We introduce dynamic edge trimming to improve the per-
formance. Web graphs normally have larger diameters than
social graphs, which makes graph traversal inefficient for
edge-centric systems. We introduce a dynamic trimming
mechanism to reduce the cost of edge trimming.

3. Based on the new type of data sets and optimizations, we
performmore experiments to make the performance evalu-
ation of FastBFSmore convincing andmore adequate. More-
over, we give some analyses on the performance differences
among different types of graphs on different systems.

4. Finally, we also add some new materials to make our moti-
vation and contribution clearer and to help the reader better
understand how FastBFS works.

1.4. Article organization

The remainder of this article is organized as follows. Section
2 introduces the design of FastBFS. We then describe the imple-
mentation of the FastBFS prototype in Section 3. The performance
evaluation of FastBFS is described in Section 4. Finally, we review
the related work in Section 5 and conclude this article in Section 6.

2. The FastBFS approach

FastBFS traverses the graph efficiently using an efficient trim-
ming mechanism. Irrelevant edges are eliminated in parallel with
the traversal without introducing much overhead.

2.1. FastBFS overview

FastBFS discovers vertices in a layered structure, originating
from the root vertex. The root vertex is considered as the first

Download English Version:

https://daneshyari.com/en/article/6874924

Download Persian Version:

https://daneshyari.com/article/6874924

Daneshyari.com

https://daneshyari.com/en/article/6874924
https://daneshyari.com/article/6874924
https://daneshyari.com

