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a b s t r a c t

In this paper, we consider the uniform deployment problem of mobile agents in asynchronous unidirec-
tional rings, which requires the agents to uniformly spread in the ring. The uniform deployment problem
is in striking contrast to the rendezvous problem which requires the agents to meet at the same node.
While rendezvous aims to break the symmetry, uniform deployment aims to attain the symmetry. It is
well known that the symmetry breaking is difficult in distributed systems and the rendezvous problem
cannot be solved from some initial configurations. Hence, we are interested in clarifying what difference
the uniform deployment problem has on the solvability and the number of agent moves compared to
the rendezvous problem. We consider two problem settings, with knowledge of k (or n) and without
knowledge of k or n where k is the number of agents and n is the number of nodes. First, we consider
agents with knowledge of k (or n since k andn can be easily obtained if one of them is given). In this case,
we propose two algorithms. The first algorithm solves the uniformdeployment problemwith termination
detection. This algorithm requires O(k log n) memory space per agent, O(n) time, and O(kn) total moves.
The second algorithm also solves the uniform deployment problem with termination detection. This
algorithm reduces the memory space per agent to O(log n), but uses O(n log k) time, and requires O(kn)
total moves. Both algorithms are asymptotically optimal in terms of total moves since there are some
initial configurations such that agents require Ω(kn) total moves to solve the problem. Next, we consider
agents with no knowledge of k or n. In this case, we show that, when termination detection is required,
there exists no algorithm to solve the uniform deployment problem. For this reason, we consider the
relaxed uniform deployment problem that does not require termination detection, and we propose an
algorithm to solve the relaxed uniform deployment problem. This algorithm requires O((k/l) log(n/l))
memory space per agent, O(n/l) time, and O(kn/l) total moves when the initial configuration has
symmetry degree l. This means that the algorithm can solve the problem more efficiently when the
initial configuration has higher symmetric degree (i.e., is closer to uniform deployment). Note that all
the proposed algorithms achieve uniform deployment from any initial configuration, which is a striking
difference from the rendezvous problembecause the rendezvous problem is not solvable fromsome initial
configurations.
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1. Introduction

1.1. Background and motivation

A distributed system consists of a set of computers (nodes) con-
nected by communication links. As a promising design paradigm
of distributed systems, (mobile) agent systems have attracted a
lot of attention [11,3]. Agents can traverse the system carrying
information collected at visiting nodes and process tasks on each
node using the information. In otherwords, agents can encapsulate
the process code and data, which simplifies design of distributed
systems [15,4].
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In this paper, we consider the uniform deployment (or uniform
scattering) problem as a fundamental problem for coordination of
agents. This problem requires all agents to spread uniformly in the
network. From a practical point of view, uniform deployment is
useful for the network management. In a distributed system, it is
necessary that regularly each node gets software updates and is
checkedwhether some application installed on the node is running
correctly or not [17,12]. Hence, considering agents with such ser-
vices, uniform deployment guarantees that agents visit each node
at short intervals and provide services. Uniform deploymentmight
be useful also for a kind of the load balancing. That is, consider-
ing agents with large-size database replicas, uniform deployment
guarantees that not all nodes need to store the database but each
node can quickly access the database [16,19]. Hence,we can see the
uniform deployment problem as a kind of the resource allocation
problem.

1.2. Related works

There are several researches considering the uniform deploy-
ment problem in the Look–Compute–Move model. In this model,
agents are assumed to be oblivious (or memoryless) but be able to
observemultiple agents (and nodes in graph environments)within
its visibility range. In the look phase, an agent takes a snapshot and
gets the positions of all agents (and nodes in graph environments)
within the visibility range. In the compute phase, based on the
snapshot, the agent decides where to go in the next movement.
In the move phase, the agent moves to the destination. Agents
repeat such cycles until the given task is completed. In the Look–
Compute–Move model, Flocchini et al. [9] considered the uniform
deployment problem in cycle environments of length m (m is a
real number). They considered two types of uniform deployment:
exact and ϵ-approximate. In the exact uniform deployment, agents
move in the ring so that the distance between any two consecutive
agents is the same, say d. In the ϵ-approximate uniform deploy-
ment, agents move in the cycle so that the distance should be
between d − ϵ and d + ϵ. They showed that if agents do not have
common sense of direction, agents cannot solve the exact uniform
deployment problem even if agents have unlimited memory and
visibility range. If agents have common sense of direction, they
proposed an algorithm to solve the exact uniform deployment
problem for agents with knowledge of d. In addition, for any ϵ > 0
they proposed an algorithm to solve the ϵ-approximate uniform
deployment problem for agents without knowledge of d.

Elor et al. [7] considered uniform deployment in ring networks.
They considered agents without knowledge k or n, where k is
the number of agents and n is the number of nodes, but with
visibility range VR. They considered a semi-synchronous model,
that is, a subset of agents execute a behavior in each round. They
showed that, if VR < ⌊n/k⌋ holds, agents cannot solve the uni-
form deployment problem. If VR ≥ ⌊n/k⌋ holds, they proposed
an algorithm to solve the balanced uniform deployment problem
without quiescence. That is, agents eventually satisfy the condition
of uniform deployment and continue tomove in the ring satisfying
the condition. In addition, they proposed an algorithm to solve
the semi-balanced uniform deployment problemwith quiescence.
That is, agents eventually terminate the algorithm satisfying the
condition such that the distance between any two adjacent agents
is between n/k − k/2 and n/k + k/2.

While [9] and [7] considered uniform deployment in ring net-
works, Barriere et al. [2] considered uniform deployment in grid
networks and proposed an algorithm to achieve uniform deploy-
ment in O(n/d) time, where d is the interval of uniform deploy-
ment.

1.3. Our contributions

In this paper, we focus on uniform deployment on asyn-
chronous unidirectional rings. Although ring networksmight seem
so restricted in practice, it is known that the idea for ring net-
works is fundamental one and can be applied to other networks
by embedding a ring in the network [6,20]. Different from [9,7,2],
we consider agents that have memory but cannot observe nodes
except for the currently located node. To the best of our knowledge,
this is the first research considering uniform deployment for such
agents. In addition to the fact that uniform deployment is useful
from a practical point of view as mentioned before, it is interesting
to investigate also froma theoretical point of view. Theproblemex-
hibits a striking contrast to the rendezvous problem. The rendezvous
problem, one of the most investigated problem, requires all agents
to meet at a single node [14], and by doing this agents can share
information or synchronize behaviors among them [8,10,13,1,5].
While rendezvous aims to break the symmetry and requires all
the agents to meet at the single node, uniform deployment aims
to attain the symmetry of agent locations and requires agents to
spread uniformly. It is well known that the symmetry breaking
is difficult (and sometimes impossible) in distributed systems,
and the rendezvous problem cannot be solved from some initial
configurations. Hence, it is interesting to clarify what difference
the uniform deployment problem has on the solvability and the
number of agent moves compared to the rendezvous problem.

Contributions of this paper are summarized in Table 1. We
assume that each agent initially has a token and can release it
on a node that it is visiting. After a token is released at some
node, agents cannot remove the token. In addition, we assume that
agents can send amessage of any size to agents staying at the same
node. We consider two problem settings. First, we consider agents
with knowledge of k (or n since k and n can be easily obtained if
one of them is given). In this case, we propose two algorithms.
The first algorithm solves the uniform deployment problem with
termination detection. This algorithm requires O(k log n) memory
space per agent, O(n) time, and O(kn) total moves. The second
algorithm also solves the uniform deployment problem with ter-
mination detection. This algorithm reduces the memory space per
agent to O(log n), but uses O(n log k) time, and requires O(kn) total
moves. Note that, from some initial configurations agents require
Ω(kn) total moves to solve the problem. Hence, both algorithms
are asymptotically optimal in terms of total moves.

Next, we consider agents with no knowledge of k or n. In this
case, we show that, when termination detection is required, there
exists no algorithm to solve the uniform deployment problem.
Intuitively, it is due to impossibility of finding k or nwhen the ini-
tial configuration has sufficient number of repetitions of an agent
location pattern: when an agent misestimates these at smaller
numbers than actual ones, it prematurely terminates and uniform
deployment cannot be achieved.

For this reason, we consider the relaxed uniform deployment
problem that does not require termination detection, and we
propose an algorithm to solve the relaxed uniform deployment
problem. In this algorithm, each agent estimates k and n (possibly
at smaller values than actual ones) and behaves based on the
estimation. Thus, the efficiency of the algorithm depends on the
estimation. To evaluate the efficiency, we introduce the follow-
ing parameter l to denote by the symmetry degree of an initial
configuration: we say that an initial configuration has symme-
try degree l when its distance sequence can be represented as
l-times repetition of some aperiodic sequence. For example, the
initial configuration in Fig. 1(a) has symmetry degree 1 since its
whole distance sequence (1,4,2,1,2,2) is aperiodic, and the initial
configuration in Fig. 1(b) has symmetry degree 2 since its whole
distance sequence (1,2,3,1,2,3) is represented as 2-times repeti-
tion of aperiodic sequence (1,2,3). Hence, the symmetry degree
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