J. Parallel Distrib. Comput. 118 (2018) 128-139

Contents lists available at ScienceDirect
PARALLEL AND
DISTRIBUTED
COMPUTING

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

Designing lab sessions focusing on real processors for computer n
architecture courses: A practical perspective o
Josué Feliu *, Julio Sahuquillo, Salvador Petit

Department of Computer Architecture (DISCA), Universitat Politécnica de Valéncia, Cami de Vera s/n, 46022, Valéncia, Spain

HIGHLIGHTS

o We present a new approach for computer architecture labs based on real processors.
o We discuss the methodology and scheduling framework to support the labs.
e Five lab examples studying different topics illustrate the scope of the approach.

ARTICLE INFO ABSTRACT

Article history:

Received 15 June 2017

Received in revised form 2 February 2018
Accepted 26 February 2018

Available online 8 March 2018

Computer architecture courses typically include lab sessions to reinforce, from a practical perspective,
concepts and architectural mechanisms studied in lectures. Lab sessions are mainly based on simulation
frameworks because they benefit learning. Reading the source code that models certain processor
mechanisms allows students to acquire a sound knowledge of how hardware works. Unfortunately,
simulators that model current multicore processors are getting more and more complex, which lengthens
the learning phase and complicates their use in time-bounded lab sessions.

In this paper, we propose a new approach that complements the use of simulation frameworks in lab
sessions of computer architecture courses. This approach is based on performing experiments on current
commercial processors, where multiple hardware events related to the performance of the computer
components under study are monitored. Then, students analyze the measured events and how they
impact the overall performance. Such analysis motivates students and, not only helps reinforcing the
theoretical concepts, but also increases their analysis skills. In this paper we present the methodology
and scheduling framework that support the proposed approach and discuss five lab sessions, which can
be applied in different courses, covering multiple computer architecture topics.

© 2018 Elsevier Inc. All rights reserved.

Keywords:

Lab sessions
Computer architecture
Real processors
Processor complexity
Scheduling framework

1. Introduction lectures work, which helps correcting any possible misunderstand-
ing and motivates these students that might feel discouraged at
classrooms. To this end, labs use computer simulation frameworks
like Multi2sim [21] or Snipper [6], which model complex proces-
sors and their structures in detail. Working on small fragments
of the simulator source code helps students to appreciate the
details about how specific processor mechanisms work, allowing
them to acquire a sound knowledge about internal architectural
mechanisms from a practical perspective. Therefore, simulators
play an important role in post-graduate courses, especially when a
major goal of the course is to provide research skills to students.
While simulators are valuable tools to study the details of

Most electrical and engineering schools around the world offer
two or three courses on computer organization and computer
architecture topics. These courses usually comprise both conven-
tional lectures at classroom and practical sessions at laboratories.
Computer architecture courses are typically considered as difficult
courses by students mainly due to the wide range of topics that
are covered as well as the intrinsic difficulty of some of them. In
addition, topics are usually studied from a theoretical perspective,
which discourages many students from continuing their education
in computer architecture.

Lab sessions are an excellent way to reinforce the theoretical

concepts taught at conventional lectures. They provide a clear
understanding about how the computer mechanisms studied at

* Corresponding author.
E-mail address: jofepre@gap.upv.com (J. Feliu).

https://doi.org/10.1016/j.jpdc.2018.02.026
0743-7315/© 2018 Elsevier Inc. All rights reserved.

hardware, they fail to provide an overview of how the distinct
components of the machine interact to each other. For example,
how last level cache (LLC) misses impact processor performance.
One reason that explains this drawback is that simulating a current
multicore with complex cores and a huge cache hierarchy is time

https://doi.org/10.1016/j.jpdc.2018.02.026
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2018.02.026&domain=pdf
mailto:jofepre@gap.upv.com
https://doi.org/10.1016/j.jpdc.2018.02.026

J. Feliu et al. /]. Parallel Distrib. Comput. 118 (2018) 128-139 129

consuming. In fact, running just a millisecond of execution on real
hardware can take several hours with the simulator.

To deal with such problems, we propose lab sessions where
students work on real hardware. The proposed labs make use of the
hardware performance counters implemented in most recent pro-
cessors from the major manufacturers Intel [14], AMD [9], IBM [18]
or ARM [2]. Performance counters consist of a set of special purpose
registers that allow tracking advanced processor events such as
committed instructions, run cycles, memory accesses, or branch
misses, among many others.

In summary, this paper presents a new approach to study com-
puter architecture topics at lab sessions focusing on real hardware
and makes two main contributions.

e First, we present a methodology that can be used as a guide
in the preparation of computer architecture labs using per-
formance counters. It is aimed at reducing the long time re-
quired to prepare and develop this kind of labs and considers
both performance counters and common benchmark suites
used in research. The methodology employs an adapted
version of a research framework that has been successfully
used in PhD thesis at our research group, and the proposed
lab sessions are based on the authors’ expertise acquired
while doing research on computer architecture in commer-
cial processors during the last decade. While performance
counters have been widely used in current research, to the
best of our knowledge this is the first time that their use is
applied to computer architecture labs.

e Second, we discuss five lab examples covering different
levels of difficulty, depending on the course level. The main
novelty of these labs is that they study the different topics
by measuring multiple hardware events related with the
topics under study on current commercial processors. The
presented labs are aimed at illustrating how lab sessions for
computer architecture courses based on real machines can
be designed. Instructors can use, if they consider appropri-
ate, either a subset of the proposed labs or design their own
labs. Nevertheless, we would like to remark that these labs
do not intend to replace simulators, but both kind of labs are
orthogonal and fit a different range of learning goals.

The remainder of this work is organized as follows. Section 2
motivates the use of real machines for the proposed labs. Section 3
discusses how computer architecture courses are typically orga-
nized at universities. Section 4 presents the proposed methodol-
ogy. Section 5 introduces the scheduling framework used at labs.
Section 6 discusses the proposed labs. Section 7 provides some evi-
dences for evaluating the proposed methodology. Finally, Section 8
presents some concluding remarks.

2. Motivation

Simulation has been, and continues being, an extensive
methodology widely used across computer architects for research
purposes. Detailed cycle-by-cycle simulators model what happens
at the different processor stages every processor clock, which helps
researchers to precisely understand how the processor and its
internal mechanisms work. Because of this reason, computer archi-
tects either develop their own simulators or use other simulators
widely spread across the scientific community such as [6,21,16].

The use of simulators has probably been the best way, if not
the only one, to go deeper into the study of computer architecture
topics, either for research or teaching purposes, in the last two
decades. Thus, simulators have been widely used by professors
and instructors both in the academia and the industry. To avoid
the difficulties of complex simulation frameworks in lab sessions,
a wide range of in house simulators have also been developed

by instructors at universities such as DLX [5]. These simulators
provide different complexity levels depending on the learning re-
quirements, and usually provide some kind of graphical represen-
tation (e.g. display of simple pipelines) to ease the understanding
of computer architecture topics.

However, as processors become more advanced and computer
architecture courses need to cover the latests features of recent
processors, simulators inevitably get more and more complex
(e.g. they model hardware prefetchers, memory controllers, cache
coherence protocols, etc.). Hence, simulation frameworks that
model current advanced processors present two important disad-
vantages: (i) their complexity translates into a very long learning
phase that is not adequate for undergraduates, and (ii) due to
the fast evolution of current processors they often fail to model
the newest advances of all the system components (e.g. the main
memory or the network on chip).

In addition, writing a simulator that mimics the behavior of a
specific machine is almost an impossible task. A major drawback
that must be overcome is that many hardware details are not
publicly available. Thus, the simulator developer may implement
hardware functionality incorrectly. Besides, many components
that significantly affect system performance like the main memory,
the LLC caches, or their replacement algorithms, along with their
interactions, need to be modeled. Many times researchers join
different simulators (e.g. for the core and for the main memory)
with the aim of more accurately modeling the entire system, but
even so they are only able to model a machine that is still quite
different from the real hardware.

In summary, on the one hand simulators fail to precisely model
all the machine components (e.g. the main memory, the intercon-
nects, the cores, the LLC replacement algorithm, etc.) and even
more their most advanced features. On the other hand, the high
number of simulated components makes simulation impractical
for studying current multicores in lab sessions with a limited
length (e.g. around two hours). Given the previous rationales, we
believe that students need to use real hardware to obtain accurate
and precise results and understand how the different parts of the
machine interact among them.

3. Computer architecture courses in computer engineering
curricula

3.1. General overview

Most Computer Engineering curricula include an introductory
course, e.g. Computer Organization, where the basics of computer
systems (i.e. the arithmetic unit, the processor pipeline, the mem-
ory system, the I/O unit, etc.) are introduced to the students. Then,
at least two courses (e.g. Computer Architecture I and Computer
Architecture II) study computer architecture topics in depth. The
former computer architecture course is usually a core course in the
curricula, while the second one covers more advanced topics and
can be offered either as core or elective course depending on the
syllabus.

Computer Architecture I courses cover a wide range of computer
architecture topics such as superscalar architectures, branch pre-
diction, out-of-order execution, or the memory hierarchy, among
others. They might also introduce more advanced topics such as
multicore or multithreaded architectures and/or interconnection
networks. Instructors usually teach students to identify the main
components of the system (i.e. the processor, the caches, and
the main memory) and how different designs for each of these
components impact on performance.

Computer Architecture Il courses typically focus on parallel ar-
chitectures or very advanced topics. Hence, they go further in the
study of multicore and multithreaded architectures, as well as,

Download English Version:

https://daneshyari.com/en/article/6874982

Download Persian Version:

https://daneshyari.com/article/6874982

Daneshyari.com

https://daneshyari.com/en/article/6874982
https://daneshyari.com/article/6874982
https://daneshyari.com

