
Please cite this article in press as: L.B. Ngo, et al., Unifying computing resources and access interface to support parallel and distributed computing education, J. Parallel
Distrib. Comput. (2018), https://doi.org/10.1016/j.jpdc.2018.02.020.

J. Parallel Distrib. Comput. () –

Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

Unifying computing resources and access interface to support parallel
and distributed computing education
Linh B. Ngo a,b,*, Ashwin Trikuta Srinath a, Jeffrey Denton a, Marcin Ziolkowski a
a Clemson Computing and Information Technology, Clemson University, Clemson, SC, United States
b School of Computing, Clemson University, Clemson, SC, United States

h i g h l i g h t s

• Design of a framework combining various computing resources and browser-based access interfaces.
• Description of learning modules for a CS course leveraging this framework.
• Reports on students’ skill improvement and feedback on lecture contents and course project.

a r t i c l e i n f o

Article history:
Received 31 July 2017
Received in revised form 9 February 2018
Accepted 26 February 2018
Available online xxxx

Keywords:
Computing resources
MPI
MapReduce
Spark
Python
Distributed systems
Parallel computing education

a b s t r a c t

This article presents howvarious on-site and remote computing resources are combined into a framework
to support teaching parallel and distributed computing (PDC) at the undergraduate level. The combination
of these resources enables the delivery of PDC programming, system, and architectural concepts via a
browser-based common interface (JupyterHub) and a single programming environment (Python and its
supported libraries). This also allows lecturers and students to focus more on the principles of PDC and
less on the technicalities of native languages for different platforms.We describe how this framework can
support a comprehensive set of PDC course modules, including lectures, assignments, and projects, for a
full semester junior-level class. Adoption of this framework in various teaching environments at Clemson
University has received positive feedback from both instructors and participants.

Published by Elsevier Inc.

1. Introduction

Parallel and distributed computing (PDC) has become integral
to various aspects of IT across all academic disciplines and in-
dustrial areas. It is critical that college graduates are properly
introduced to PDC core concepts and technologies for their future
careers. The existing body of PDC knowledge spans across four
different areas: Data Structures and Algorithms, Software Design,
Software Environments, and Hardware [8]. A traditional Beowulf-
based computing cluster [40], available through either on-site or
public resources, can adequately provide a classroom computing
environment for this knowledge, as shown in Fig. 1.

However, there remains a number of issues in working within
this environment. First, interactions with computing clusters are

* Corresponding author at: Clemson Computing and Information Technology,
Clemson University, Clemson, SC, United States.

E-mail addresses: lngo@clemson.edu (L.B. Ngo), atrikut@clemson.edu
(A.T. Srinath), denton@clemson.edu (J. Denton), zziolko@clemson.edu
(M. Ziolkowski).

typically done through a Linux-based command line interface (CLI).
Terminal tools to support these interactions are available by de-
fault on Linux and Mac, but not on Windows. A portion of the
class time must be spent on ensuring that all students can access
the computing infrastructures. This necessitates that instructions
and technical support for Linux and Mac terminals, and terminal
emulators for Windows (e.g., PuttY or SSH Secure Shell) need to
be prepared. The second issue arises from the need to include
various new technologies in the curriculum as PDC moves beyond
the traditional high performance computing concepts and into
areas of data-intensive computing, big data analytics, and large-
scale streaming systems. This leads to an increase in the number
of computing tools and platforms that need to be taught together
with the corresponding PDC concepts. To deliver this expanding set
of new PDC concepts and enable students to have adequate hands-
on practice within the limited class time, instructors will need
to face in-class technological issues that will most certainly arise
fromworkingwith these various tools and platforms. Furthermore,
while most of these new platforms support Java, a commonly
taught language within the core curriculum, the code complexity

https://doi.org/10.1016/j.jpdc.2018.02.020
0743-7315/Published by Elsevier Inc.

https://doi.org/10.1016/j.jpdc.2018.02.020
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
mailto:lngo@clemson.edu
mailto:atrikut@clemson.edu
mailto:denton@clemson.edu
mailto:zziolko@clemson.edu
https://doi.org/10.1016/j.jpdc.2018.02.020

Please cite this article in press as: L.B. Ngo, et al., Unifying computing resources and access interface to support parallel and distributed computing education, J. Parallel
Distrib. Comput. (2018), https://doi.org/10.1016/j.jpdc.2018.02.020.

2 L.B. Ngo et al. / J. Parallel Distrib. Comput. () –

Fig. 1. A traditional classroom computing environment for teaching PDC concepts.

is significant. For example, the well-known Hadoop MapReduce
WordCount program [1] requires fifty five lines of Java code. Out
of these lines, only ten are directly related to the MapReduce pro-
gramming portions, while the remaining forty five include library
imports, class and function declarations, and standard job configu-
rations. In both formal and informal educational settings, explana-
tion of these lines present significant timing overheads during the
hands-on practice segments of the lectures. They distract learners
from programming paradigms and workflow designs, which are
more important aspects of the learning process. In many cases,
they require instructors to spend valuable class time for trouble
shooting and technical support.

In this paper, we describe our approach at Clemson Univer-
sity in addressing these issues by unifying on-site and remote
computing resources, access platforms, and programming tools
into a common PDC educational framework. This framework is
shown in Fig. 2. To support the traditional PDC concepts, we utilize
Clemson University’s research cluster, the Palmetto Supercom-
puter (Palmetto). For advanced PDC concepts, educational mod-
ules are developed using CloudLab, a public research computing
testbed [37]. To combine these two resources, we deploy and
integrate JupyterHub as the front-end for Palmetto. JupyterHub
allows users to spawn Jupyter server, a platform that provides con-
venient access to computing environments for high performance
computing, big data, and data intensive computing infrastructures.
With Jupyter’s ability to support a diverse set of programming
languages, a browser-based terminal, and a text editor, students
can be introduced to PDC through a standardized browser-based
interface across different operating systems. The browser-based

terminal also allows students to seamlessly interact with CloudLab
from Palmetto.

The default language for JupyterHub Notebooks is Python. The
availability of various community-supported Python libraries for
PDC allows instructors to teach PDC concepts from different plat-
forms without having students learn the various native languages
of these platforms. As a result, students can spend more time
understanding PDC concepts and less time on syntax correctness
of specific tools and languages. This facilitates the instructional
delivery of the most common PDC areas such as high performance
computing, data-intensive computing, and in-memory distributed
computing, which were originally designed for different comput-
ing platforms using different languages. With the popularity of
Python and the variety of Python libraries/APIs that support paral-
lel and distributed programming, there exists a number of tutorials
and teachingmaterials for PDC using Python. Examples include the
exhaustive tutorial for Python and MPI by the creators of mpi4py
[12] or the framework to teach MapReduce programming via a
web browser [17]. Our frameworkwill further extend the ability to
utilize Python to teach PDC by developing Python-based learning
modules on a common and consistent interface, the Jupyter note-
books.

The unified educational framework for PDC presented in this
article will enable important aspects of teaching PDC [21] such
as showing speedup, real time results, visual results, interactiv-
ity, active learning, reproducibility, and accessibility. All resulting
educational modules are available online. The remainder of this
paper is organized as follows. Section 2 describes Palmetto and
CloudLab, the on-site and remote computing resources, as well as
the design and deployment of JupyterHub on Palmetto. Section 3
contains three topics. First, We discuss previous work that used
Python in PDC education. Second, we describe course modules
that use Jupyter and Python to teach high performance computing,
data-intensive computing, and in-memory distributed computing
concepts. Third, we show how the course modules can combine
CloudLab, Jupyter, and Python in teaching advanced topics such as
distributed system architectures, schedulers, and distributed file
systems. Section 4 describes user evaluation of this unified edu-
cational computing framework from participants in various work-
shops and students from a class that teaches high performance and
data-intensive computing. The evaluation includes performance
observations and feedback from students and instructors who use
the platform. Section 5 concludes the paper and discusses future
work.

2. Unifying computing resources and access platforms

It is typical for PDC to be primarily taught as a single course
within the entire undergraduate CS curriculumwhile having some
PDC concepts embedded in other courses [9,42]. At Clemson Uni-
versity, PDC education is delivered through two settings, formal
academic courses and informal half/full-day training workshops.

The PDC academic course is CPSC 3620, a computer science
course on the topic of distributed and cluster computing. This
course is taught in fifty-minute classes three times a week. While
this is a required junior-level course, most students in the class
wait until the first or second semester of their senior year before
taking the course. The enrollment of the class ranges between 40
and 45 students. The course is intended to present students with a
broad overview of PDC. The topics covered include distributed file
systems, themessage-passing programming paradigm, scheduling
on a cluster of computers, big data and data-intensive computing,
the map-reduce programming paradigm, in-memory distributed
computing, cloud computing, message-oriented middleware, and
distributed stream processing [28].

Download English Version:

https://daneshyari.com/en/article/6874988

Download Persian Version:

https://daneshyari.com/article/6874988

Daneshyari.com

https://daneshyari.com/en/article/6874988
https://daneshyari.com/article/6874988
https://daneshyari.com

