
J. Parallel Distrib. Comput. 117 (2018) 50–62

Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

A self-stabilizing memory efficient algorithm for the minimum
diameter spanning tree under an omnipotent daemon
Lélia Blin a, Fadwa Boubekeur b, Swan Dubois c,*
a Sorbonne Université, Université d’Evry-Val-d’Essonne, CNRS, LIP6 UMR 7606, 4 place Jussieu, 75005 Paris, France
b DAVID, UVSQ, Université Paris-Saclay, 45 Avenue des Etats-Unis, 78035 Versailles, France
c Sorbonne Université, UPMC Univ Paris 06, CNRS, INRIA, LIP6 UMR 7606, 4 place Jussieu, 75005 Paris, France

h i g h l i g h t s

• A self-stabilizing algorithm for the minimum diameter spanning tree construction problem is proposed.
• It is the first one that operates under the unfair and distributed scheduler.
• It needs only O(log n) bits of memory per process (where n is the number of processes).
• These features are not achieved to the detriment of the convergence time, that stays polynomial.

a r t i c l e i n f o

Article history:
Received 22 July 2016
Received in revised form 18 October 2017
Accepted 17 February 2018
Available online 27 February 2018

Keywords:
Self-stabilization
Spanning tree
Center
Diameter
MDST
Unfair daemon

a b s t r a c t

Routing protocols are at the core of distributed systems performances, especially in the presence of faults.
A classical approach to this problem is to build a spanning tree of the distributed system. Numerous
spanning tree construction algorithms depending on the optimized metric exist (total weight, height,
distance with respect to a particular process, . . . ) both in fault-free and faulty environments. In this paper,
we aim at optimizing the diameter of the spanning tree by constructing a minimum diameter spanning
tree. We target environments subject to transient faults (i.e. faults of finite duration).

Hence, we present a self-stabilizing algorithm for the minimum diameter spanning tree construction
problem in the state model. Our protocol has the following attractive features. It is the first algorithm
for this problem that operates under the unfair and distributed adversary (or daemon). In other words,
no restriction is made on the asynchronous behavior of the system. Second, our algorithm needs only
O(log n) bits of memory per process (where n is the number of processes), that improves the previous
result by a factor n. These features are not achieved to the detriment of the convergence time, which stays
polynomial.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Self-stabilization [19,20,43] is one of the most versatile tech-
niques to sustain availability, reliability, and serviceability in mod-
ern distributed systems. After the occurrence of a catastrophic
failure that placed the system components in some arbitrary global
state, self-stabilization guarantees recovery to a correct behav-
ior in finite time without external (i.e. human) intervention. This
approach is particularly well-suited for self-organized or auto-
nomic distributed systems.

In this context, one critical task of the system is to recover
efficient communications. A classicalway to dealwith this problem

* Correspondence to: Sorbonne Université, LIP6 - case 26-00/207, 4 place Jussieu,
75005 Paris Cedex 5, France.

E-mail addresses: lelia.blin@lip6.fr (L. Blin), fadwa.boubekeur@lip6.fr
(F. Boubekeur), swan.dubois@lip6.fr (S. Dubois).

is to construct a spanning tree of the system and to routemessages
between processes only on this structure. Depending on the con-
straints required on this spanning tree (e.g. minimal distance to a
particular process,minimum flow, . . . ), we obtain routing protocols
that optimize different metrics.

In this paper, we focus on theminimumdiameter spanning tree
(MDST) construction problem [32]. The MDST problem is a par-
ticular spanning tree construction in which we require spanning
trees to minimize their diameters. Indeed, this approach is natural
if we want to optimize the worst communication delay between
any pair of processes (since this latter is bound by the diameter of
the routing tree, that is minimal in the case of the MDST).

The contribution of this paper is to present a new self-
stabilizing MDST algorithm that operates in any asynchronous
environment, and that improves existing solutions on thememory
space required per process. Namely, we decrease the best-known

https://doi.org/10.1016/j.jpdc.2018.02.007
0743-7315/© 2018 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jpdc.2018.02.007
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2018.02.007&domain=pdf
mailto:lelia.blin@lip6.fr
mailto:fadwa.boubekeur@lip6.fr
mailto:swan.dubois@lip6.fr
https://doi.org/10.1016/j.jpdc.2018.02.007


L. Blin et al. / J. Parallel Distrib. Comput. 117 (2018) 50–62 51

space complexity for this problem by a factor of n (where n is the
number of processes). Note that this does not come at the price of
degrading time performance. A preliminary version of this work
appears in [5].

Related works. Spanning tree construction was extensively stud-
ied in the context of distributed systems either in a fault-free
setting or presence of faults. There is an extensive, literature
on self-stabilizing construction of various kinds of trees, in-
cluding spanning trees (ST) [15,39], breadth-first search (BFS)
trees [1,12,16,25,35], depth-first search (DFS) trees [14,34],
minimum-weight spanning trees (MST) [38,6], shortest-path span-
ning trees [30,36], minimum-degree spanning trees [9], Steiner
Tree [8], etc. A survey on self-stabilizing distributed protocols for
spanning tree construction can be found in [27].

The MDST problem is closely related to the determination of
centers of the system [31]. Indeed, a center is a process that
minimizes its eccentricity (i.e. its maximum distance to any other
process of the system). Then, it is well-known that a BFS span-
ning tree rooted to a center is an MDST. As many self-stabilizing
solutions to BFS spanning tree construction exist, we focus, in the
following part on the hardest part of theMDST problem: the center
computation problem.

A natural way to compute the eccentricity of processes of a
distributed system (and beside, to determine its centers) is to solve
first the all-pairs shortest path (APSP) problem. This problem con-
sists in computing, for any pair of processes, the distance between
them in the system. This problem was extensively studied under
various assumptions. For instance, [33] provides an excellent sur-
vey on recently distributed solutions to this problem and presents
an almost optimal solution in synchronous settings. Note that there
also exist some approximation results for this problem, e.g. [40,42],
but they fall outside the scope of this work since we focus on exact
algorithms. In conclusion, this approach is appealing since it allows
to use well-known solutions to the APSP problem, but it yields
automatically to a O(n log n) space requirement per process (due
to the very definition of the problem).

In contrast, only a few works focused directly on the computa-
tion of centers of a distributed system to reduce space requirement
aswedo in thiswork. In a synchronous and fault-free environment,
we can cite [37] that present the first algorithm for computing
directly centers of a distributed system. In a self-stabilizing set-
ting, some works [2,11,17] described solutions that are specific
to tree topologies. The most related work to ours is from Butelle
et al. [13]. The self-stabilizing distributed protocol proposed in
this latter makes no assumptions on the underlying topology of
the system and works in asynchronous environments. Its main
drawback lies in its space complexity of O(n log n) bits per process,
that is equivalent to those of APSP-based solutions.

Our contribution. At the best of our knowledge, the question
whether it is possible to compute centers of any distributed system
in a self-stabilizingway using only a sublinearmemory per process
is still open. Our main contribution is to answer positively to this
question by providing a new deterministic self-stabilizing algo-
rithm that requires only O(log n) bits per process, which improves
the current results by a factor n.Moreover, our algorithm is suitable
for any asynchronous environment since we do not make any
assumption on the adversary (or daemon) and has a convergence
time inO(n2) rounds (that is comparable to existing solutions [13]).

Organization of the paper. This paper is organized as follows. In
Section 2, we formalize the model used afterward. Section 3 is de-
voted to the description of our algorithm while Section 4 contains
its correctness proof. Finally, we discuss some open questions in
Section 5.

2. Model and definitions

State model. We model the system as an undirected connected
graph G = (V , E) where V is a set of processes and E is a binary
relation that denotes the ability for two processes to communicate,
i.e. (u, v) ∈ E if and only if u and v are neighbors. We consider only
identified systems (i.e. there exists a unique identifier idv for each
process v taken in the set [0, nc

] for some constant c). The set of
all neighbors of v, called its neighborhood, is denoted by Nv . In the
following, n denotes the number of processes of the network.

We consider the classical state model (see [20]) where com-
munications between neighbors are modeled by direct reading of
variables instead of an exchange of messages. Every process has
a set of shared variables (henceforth, referred to as variables). A
process v can write to its own variables only, and read its own
variables and those of its neighbors. The state of a process is defined
by the current value of its variables. The state of a system (a.k.a.
the configuration) is the product of the states of all processes.
We denote by Γ the set of all configurations of the system. The
algorithm of every process is a finite set of rules. Each rule con-
sists of: <label>:<guard>−→<statement>. The label of a rule is
simply a name to refer the action in the text. The guard of a rule
in the algorithm of v is a boolean predicate involving variables
of v and its neighbors. The statement of a rule of v updates one
or more variables of v. A statement can be executed only if the
corresponding guard is satisfied enabled, and process v is enabled
in γ ∈ Γ if and only if at least one rule is enabled for v in γ .

A step γ → γ ′ is defined as an atomic execution of a non-empty
subset of enabled rules in γ that transitions the system from γ

to γ ′. An execution of an algorithm A is a maximal sequence of
configurations ϵ = γ0γ1 . . . γiγi+1 . . . such that, ∀i ≥ 0, γi → γi+1
is a step if γi+1 exists (else γi is a terminal configuration).Maximality
means that the sequence is either finite (and no action of A is
enabled in the terminal configuration) or infinite. E is the set of all
possible executions of A. A process v is neutralized in step γi →

γi+1 if v is enabled in γi and is not enabled in γi+1, yet did not
execute any rule in step γi → γi+1.

The asynchronism of the system is modeled by an adversary
(a.k.a. daemon) that chooses, at each step, the subset of enabled
processes that are allowed to execute one of their rules during this
step (we say that such processes are activated during the step). The
literature proposed a lot of daemons depending on their charac-
teristics (like fairness, distribution, . . . ), see [26] for a taxonomy of
these daemons. Note that we assume an unfair distributed daemon
in this work. This daemon is the most challenging since we made
no assumption of the subset of enabled processes chosen by the
daemon at each step. We only require this set to be non-empty
if the set of enabled processes is not empty in order to guarantee
progress of the algorithm.

To compute time complexities, we use the definition of
round [24]. This definition captures the execution rate of the slow-
est process in any execution. The first round of ϵ ∈ E , noted
ϵ′, is the minimal prefix of ϵ containing the execution of one
action or the neutralization of every enabled process in the initial
configuration. Let ϵ′′ be the suffix of ϵ such that ϵ = ϵ′ϵ′′. The
second round of ϵ is the first round of ϵ′′, and so on.

Self-stabilization. LetP be a problem to solve. A specification ofP is
a predicate that is satisfied by every execution inwhichP is solved.
We recall the definition of self-stabilization.

Definition 1 (Self-Stabilization [19]). Let P be a problem, and SP
a specification of P . An algorithm A is self-stabilizing for SP if
and only if for every configuration γ0 ∈ Γ , for every execution
ϵ = γ0γ1 . . . , there exists a finite prefix γ0γ1 . . . γl of ϵ such that
every execution of A starting from γl satisfies SP .



Download English Version:

https://daneshyari.com/en/article/6874998

Download Persian Version:

https://daneshyari.com/article/6874998

Daneshyari.com

https://daneshyari.com/en/article/6874998
https://daneshyari.com/article/6874998
https://daneshyari.com

