
J. Parallel Distrib. Comput. 113 (2018) 92–114

Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

Replicable parallel branch and bound search
Blair Archibald a,*, Patrick Maier a, Ciaran McCreesh a, Robert Stewart b, Phil Trinder a

a School Of Computing Science, University of Glasgow, Scotland, G12 8QQ, United Kingdom
b Heriot-Watt University, Edinburgh, Scotland, EH14 4AS, United Kingdom

h i g h l i g h t s

• We consider how to gain replicable performance for parallel branch and bound searches.
• We provide a reduction-oriented formal model of parallel branch and bound.
• We present a generic branch and bound API based around higher order functions.
• We design two parallel skeletons each with different performance characteristics.
• Evaluation shows that the Ordered skeleton achieves both good and replicable parallel performance.

a r t i c l e i n f o

Article history:
Received 20 February 2017
Received in revised form 17 July 2017
Accepted 15 October 2017

Keywords:
Algorithmic skeletons
Branch-and-bound
Parallel algorithms
Combinatorial optimisation
Distributed computing
Repeatability

a b s t r a c t

Combinatorial branch and bound searches are a common technique for solving global optimisation and
decisionproblems. Their performance oftendepends on good search order heuristics, refined over decades
of algorithms research. Parallel search necessarily deviates from the sequential search order, sometimes
dramatically and unpredictably, e.g. by distributing work at random. This can disrupt effective search
order heuristics and lead to unexpected and highly variable parallel performance. The variability makes
it hard to reason about the parallel performance of combinatorial searches.

This paper presents a generic parallel branch and bound skeleton, implemented in Haskell, with
replicable parallel performance. The skeleton aims to preserve the search order heuristic by distributing
work in an ordered fashion, closely following the sequential search order. We demonstrate the generality
of the approach by applying the skeleton to 40 instances of three combinatorial problems: Maximum
Clique, 0/1 Knapsack and Travelling Salesperson. The overheads of our Haskell skeleton are reasonable:
giving slowdown factors of between 1.9 and 6.2 compared with a class-leading, dedicated, and highly
optimised C++ Maximum Clique solver. We demonstrate scaling up to 200 cores of a Beowulf cluster,
achieving speedups of 100x for several Maximum Clique instances. We demonstrate low variance of
parallel performance across all instances of the three combinatorial problems and at all scales up to 200
cores, with median Relative Standard Deviation (RSD) below 2%. Parallel solvers that do not follow the
sequential search order exhibit far higher variance, with median RSD exceeding 85% for Knapsack.

© 2017 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Branch and bound backtracking searches are a widely used
class of algorithms. They are often applied to solve a range of
NP-hard optimisation problems such as integer and non-linear
programming problems; important applications include frequency
planning in cellular networks and resource scheduling, e.g. assign-
ing deliveries to routes [26].

* Corresponding author.
E-mail addresses: b.archibald.1@research.gla.ac.uk (B. Archibald),

Patrick.Maier@glasgow.ac.uk (P. Maier), Ciaran.McCreesh@glasgow.ac.uk
(C. McCreesh), r.stewart@hw.ac.uk (R. Stewart), Phil.Trinder@glasgow.ac.uk
(P. Trinder).

Branch and bound systematically explores a search tree by sub-
dividing the search space and branching recursively into each
sub-space. The advantage of branch and bound over exhaus-
tive enumeration stems from the way branch and bound prunes
branches that cannot better the incumbent, i.e. the current best
solution, potentially drastically reducing the number of branches
to be explored.

The effectiveness of pruning depends on two factors: (1) the
accuracy of the problem-specific heuristic to compute bounds
(2) the value of optimal solutions in each branch, and on the quality
of the incumbent; the closer to optimal the incumbent, the more
can be pruned. As a result, branch and bound is sensitive to search
order, i.e. to the order in which branches are explored.

https://doi.org/10.1016/j.jpdc.2017.10.010
0743-7315/© 2017 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.jpdc.2017.10.010
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2017.10.010&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:b.archibald.1@research.gla.ac.uk
mailto:Patrick.Maier@glasgow.ac.uk
mailto:Ciaran.McCreesh@glasgow.ac.uk
mailto:r.stewart@hw.ac.uk
mailto:Phil.Trinder@glasgow.ac.uk
https://doi.org/10.1016/j.jpdc.2017.10.010
http://creativecommons.org/licenses/by/4.0/


B. Archibald et al. / J. Parallel Distrib. Comput. 113 (2018) 92–114 93

A good search order can improve the performance of branch
and bound dramatically by finding a good incumbent early on, and
highly optimised sequential algorithms following the branch and
bound paradigmoften rely on very specific orders for performance.

Branch and bound algorithms are hard to parallelise for a num-
ber of reasons. Firstly, while branching creates opportunities for
speculative parallelism where multiple workers i.e threads/pro-
cessors search particular branches in parallel, pruning counter-
acts this, limiting potential parallelism. Secondly, parallel pruning
requires that processors share access to the incumbent, which
limits scalability. Thirdly, parallel exploration of irregularly shaped
search trees generates unpredictable numbers of parallel tasks,
of highly variable duration, posing challenges for task scheduling.
Finally, andmost importantly, parallel exploration alters the search
order, potentially impacting the effectiveness of pruning.

As a result of the last point in particular, parallel branch and
bound searches can exhibit unusual performance characteristics.
For instance, slowdowns can arisewhen the sequential search finds
an optimal incumbent quickly but the parallel search delays ex-
ploring the optimal branch. Alternately, super-linear speedups are
possible in case the parallel search happens on an optimal branch
that the sequential search does not explore until much later. In
short, the perturbation of the search order caused by adding pro-
cessors makes it impossible to predict parallel performance.

These unusual performance characteristics make reproducible
algorithmic research into combinatorial search difficult: was it the
new heuristic that improved performance, or were we just lucky
with the search ordering in this instance? As the instances we
wish to tackle become larger, parallelism is becoming central to
algorithmic research, and it is essential to be able to reason about
parallel performance.

This paper aims to develop a generic parallel branch and bound
search for distributed memory architectures such as clusters. Cru-
cially, the objective is predictable parallel performance, and the key
to achieving this is careful control of the parallel search order.

The paper starts by illustrating performance anomalies with
parallel branch and bound by using a Maximum Clique graph
search. The paper then makes the following research contribu-
tions:

• To address search order related performance anomalies,
Section 2 postulates three parallel search properties for repli-
cable performance as follows.

Sequential Bound: Parallel runtime is never higher than
sequential (one worker) runtime.

Non-increasing Runtimes: Parallel runtime does not in-
crease as the number of workers increases.

Repeatability: Parallel runtimes of repeated searches on
the same parallel configuration have low variance.

• We define a novel formal model for general parallel branch
and bound backtracking search problems (BBM) that spec-
ifies both search order and parallel reduction (Section 3).
We show the generality of BBM by using it to define three
different benchmarks with a range of application areas:
Maximum Clique (Section 3), 0/1 Knapsack (Appendix B)
and Travelling Salesperson (Appendix D).

• We define a new Generic Branch and Bound (GBB) search
API that conforms to the BBM (Section 4). The generality of
the GBB is shown by using it to implementMaximumClique
(Section 2),1 0/1 Knapsack (Appendix C) and Travelling
Salesperson (Appendix E).

1 This implementation being the first distributed-memory parallel implementa-
tion of San Segundo’s bit parallel Maximum Clique algorithm (BBMC) [52].

Fig. 1. A graph, with its Maximum Clique {a, d, f , g} shown.

• To avoid the significant engineering effort required to pro-
duce a parallel implementation for each search algorithm
weencapsulate the search behaviours as a pair of algorithmic
skeletons, that is, as generic polymorphic computation pat-
terns [12], providing distributed memory implementations
for the skeletons (Section 5). Both skeletons share the same
API yet differ in how they schedule parallel tasks. The Un-
ordered skeleton relies on random work stealing, a tried and
tested way to scale irregular task-parallel computations. In
contrast, the Ordered skeleton schedules tasks in an ordered
fashion, closely following the sequential search order, so as
to guarantee the parallel search properties.

• We compare the sequential performance of the skeletons
with a class leading hand tuned C++ search implementation,
seeing slowdown factors of between 1.9 and 6.2. We then
assess whether the Ordered skeleton preserves the parallel
search properties using 40 instances of the three benchmark
searches on a clusterwith 17 hosts and 200workers (Section
7). The Ordered skeleton preserves all three properties and
produces replicable results. The key results are summarised
and discussed in Section 8.

2. The challenges of parallel branch and bound search

We start by considering a branch and bound search application,
namely finding the largest clique within a graph. The Maximum
Clique problem appears as part of many applications such as in
bioinformatics [16], in biochemistry [9,15,18,24], for community
detection [66], for document clustering [41], in computer vision,
electrical engineering and communications [8], for image compar-
ison [53], as an intermediate step in maximum common subgraph
and graph edit distance problems [34], and for controlling flying
robots [48].

To illustrate the Maximum Clique problemwe use the example
graph in Fig. 1. In practice the graphs searched are much larger,
having hundreds or thousands of vertices. A clique within a graph
is a set of vertices where each vertex in the set is adjacent to every
other vertex in the set. For example, in Fig. 1 the set V = {a, b, c} is
a clique as all vertices are adjacent to one another. {a, b, h} is not a
clique as there is no edge between b and h. In the Maximum Clique
problem we wish to find a largest clique (there may be multiple
of the same size) in the graph. Here we are interested in the exact
solution requiring the full search space to be explored.

One approach to solving this problem would be to enumerate
the power set of vertices and check the clique property on each
(ordering by largest set). While this approach can work for smaller
graphs, the number of combinations grows exponentially with the
number of nodes in the graph making it computationally unfeasi-
ble for large graphs.

A better approach, particularly for larger graphs, is to only
generate sets of vertices that maintain the clique property. This is
the essence of the branching function. In the case of clique search,
given any set of vertices, the set of candidate choices is the set of



Download	English	Version:

https://daneshyari.com/en/article/6875063

Download	Persian	Version:

https://daneshyari.com/article/6875063

Daneshyari.com

https://daneshyari.com/en/article/6875063
https://daneshyari.com/article/6875063
https://daneshyari.com/

