
J. Parallel Distrib. Comput. 113 (2018) 250–260

Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

Concurrent use of write-once memory✩

James Aspnes a, Keren Censor-Hillel b,*, Eitan Yaakobi b
a Yale University, Department of Computer Science, United States
b Technion, Department of Computer Science, Israel

h i g h l i g h t s

• From write-once bits to write-once registers.
• Atomic multi-bit writes.
• Registers based on the tabular WOM code.
• An unrestricted MWMR implementation based on max registers.
• Lower bounds.

a r t i c l e i n f o

Article history:
Received 12 January 2017
Received in revised form 11 September
2017
Accepted 5 December 2017
Available online 15 December 2017

Keywords:
Concurrent algorithms
Write-once memory
Space complexity

a b s t r a c t

We consider the problem of implementing general shared-memory objects on top of write-once bits,
which can be changed from 0 to 1 but not back again. In a sequential setting, write-once memory
(WOM) codes have been developed that allow simulating memory that support multiple writes, even
of large values, setting an average of 1 + o(1) write-once bits per write. We show that similar space
efficiencies can be obtained in a concurrent setting, though at the cost of high time complexity and fixed
bound on the number of write operations. As an alternative, we give an implementation that permits
unboundedly many writes and has much better amortized time complexity, but at the cost of unbounded
space complexity. Whether one can obtain both low time complexity and low space complexity in the
same implementation remains open.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Write-once memory (WOM) is a storagemediumwithmemory
elements, called cells, that can only increase their value. These me-
dia can be represented as a collection of binary cells, each of which
initially represents a bit value 0 that can be irreversibly overwritten
with a bit value 1. WOM codes, first introduced by Rivest and
Shamir [33], enable to record datamultiple timeswithout violating
the asymmetrywriting constraint in aWOM. The goal in the design
of a WOM code is to maximize the total number of bits that can be
written to the memory in t writes, while preserving the property
that cells can only increase their level.

These codes were first motivated by storage media such as
punch cards and optical storage. However, in the last decade, a
wide study of these codes re-emerged due to their connection to
Flash memories. Flash memories contain floating gate cells which

✩ A preliminary version of this paper appeared in the proceedings of The 23rd In-
ternational Colloquium on Structural Information and Communication Complexity
(SIROCCO), pages 127–142, 2016.

* Corresponding author.
E-mail addresses: aspnes@cs.yale.edu (J. Aspnes), ckeren@cs.technion.ac.il

(K. Censor-Hillel), yaakobi@cs.technion.ac.il (E. Yaakobi).

are electrically charged with electrons to represent the cell level.
While it is fast and simple to increase a cell level, reducing its
level requires a long and cumbersome operation of first erasing its
entire containing block andonly thenprogramming (increasing the
level of) relevant cells, which are the ones that we need to remain
representing a 1 bit. Applying a WOM code enables additional
writes before having to physically erase the entire block.

This paper provides the first study of concurrency inwrite-once
shared memory. We investigate concurrent write-once memory
from a theoretical viewpoint, which, in particular, means that we
consider the memory impossible to erase (as opposed to consid-
ering it to be expensive). We show that any problem that can
be solved in a standard shared-memory model can be solved in
a write-once memory model, at the cost of some overhead. Our
goal is to provide an analysis of this cost, both in terms of step
complexity and space complexity.

Motivation. In addition to our interest in WOM as a computing
model, our study is motivated by two observations. First, WOM
is not subject to the ABA problem, in which memory can change
back and forth going unnoticed, which is proven to be hard to
overcome [1].

https://doi.org/10.1016/j.jpdc.2017.12.001
0743-7315/© 2017 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jpdc.2017.12.001
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2017.12.001&domain=pdf
mailto:aspnes@cs.yale.edu
mailto:ckeren@cs.technion.ac.il
mailto:yaakobi@cs.technion.ac.il
https://doi.org/10.1016/j.jpdc.2017.12.001


J. Aspnes et al. / J. Parallel Distrib. Comput. 113 (2018) 250–260 251

Table 1
A WOM code example.

Data bits First write Second write

00 000 111
10 100 011
01 010 101
11 001 110

The second reason is that several known concurrent algorithms
are already implemented using write-once bits. In other words,
for some specific problems, the overhead of using WOM can be
reduced compared to the general case. Examples of such imple-
mentations are the sifters constructed by Alistarh and Aspnes [2]
and by Giakkoupis and Woelfel [17], and some variants of the
conflict detectors, of Aspnes and Ellen [5].1 A max register [3] is
another example of an object that can be implemented usingwrite-
once bits (see overview in Section 5). Interestingly, the covering
arguments used to prove lower bounds on max registers [3] imply
that no historyless primitive can give a better implementation than
write-once bits.

Yet these specific solutions do not immediately give a gen-
eral implementation of arbitrary shared-memory objects, and the
question arises whether the space efficiencies obtained by WOM
codes in a sequential setting can transfer to a concurrent setting as
well.

The challenge. To give a flavor of the challenge in adopting known
WOM codes to concurrent use, we explain a simple example in
Table 1, introduced by Rivest and Shamir [33], which enables the
recording of two bits of information in three cells twice. It is
possible to verify that after the first 2-bit data vector is encoded
into a 3-bit codeword, if the second 2-bit data vector is different
from the first, the 3-bit codeword into which it is encoded does
not change any code bit 1 into a code bit 0, ensuring that it can be
recorded in the write-once medium.

Suppose now that the above code is used in a concurrent WOM
system, and that two processes p1 and p2 invoke write operations
with input data bits 10 and 01, respectively. This means that p1
needs to write 100 into the memory, and p2 needs to write 010
to it. In other words, p1 needs to set the first of the three bits to
1, while p2 needs to set the second. Consider a schedule in which
p1, p2 set their respective bit in someorder, and afterwards another
process p3 reads the shared memory. The bits that it sees are 110,
but these correspond to the input 11, whichwas neverwritten into
the memory, violating the specification of the memory.

The difficulty above is amplified by the fact that sincemore than
a single process is writing and reading the content of the memory,
it is not known what the value of t is, that is, how many writes
have occurred so far. This is needed in the above example for both
writing and reading.

We emphasize that there is a significant amount of funda-
mental simulations of different types of registers in the liter-
ature of distributed computing (see, e.g., [7, Chapter 10] and
[21, Chapter 4]). The above WOM example satisfies the definition
of a single-writer–multi-reader (SWMR) safe register [28,29], in
which a read that is not concurrent with a write returns a correct
value. Known simulations can use this object to construct multi-
writer–multi-reader (MWMR) atomic registers. However, these
simulations do not comply with the restrictions of not being able
to overwrite a 1 bit with a 0 bit, which arise fromWOM, and hence
different solutions must be sought.

1 This does not include the Θ(logm/log logm)-step m-valued conflict detector
that appears in [5], but does include a simpler Θ(logm)-step conflict detector in
which a write of a value whose bits are xk−1, . . . , x0 is done by setting to 1 the
corresponding bits A[i][xi] in a k× 2 array A.

1.1. Our contribution

We first show that with one additional bit that indicates to
read operations that a write operation has been completed, we
can easily implement a write-once m-bit register. Then, we show
how to support t writes, still for a single writer, within a space
complexity of 2m + t bits. After these toy examples, our goal is
to get closer to the t(1 + o(1))-space WOM code constructions
for the non-concurrent setting. Carefully adapting the tabular code
of [33] to our concurrent setting, allows us to obtain a SWMRm-bit
register that supports t writes, with the following properties.

Theorem 4.1. There is an algorithm that implements an n-process
SWMRm-bit register supporting up to t writes, using space complexity
of (1+o(1))t when t = ω(m2m), and with amortized step complexity
O(n2m) for a write and O(2m) for a read.

We then extend our tabular construction to support multiple
writers, with the aid of a reduction fromMWMR registers to SWMR
registers due to [24], and with incorporating safe-agreement ob-
jects [10] in order to efficiently share space. Our result is summa-
rized as follows.

Theorem 4.2. There is an algorithm that implements an n-process
MWMR m-bit register that supports up to t writes, using space com-
plexity of (2+ o(1))t when t = ω((m+ log n)n62m), and with amor-
tized step complexity O(n22m) for both write and read operations.

The drawback of the above implementation is its large step
complexity. At the cost of increased space complexity, we show
how to build a WOM code on top of a max register, which al-
lows drastically reduced step complexities, as stated next. Here, a
unique timestamp t is guaranteed to be associated by the algorithm
with each write operation.

Theorem 5.1. There is an algorithm that implements an n-process
MWMR register of m bits with unbounded space, where the amor-
tized step complexity of a write operation that gets associated with
a timestamp t is O(log t + m + log n) and the step complexity of a
read operation that reads a value associated with a timestamp t is
O(log t +m+ log n).

Whether it is possible to obtain both low time complexity and
low space complexity in the same implementation remains an
intriguing open question.

1.2. Additional related work

In their pioneering work, Rivest and Shamir also reported on
moreWOM code constructions, including tabular WOM codes and
linear WOM codes. Since then, several more constructions were
studied in the 1980s and 1990s [13,15,18], and more interest to
these codes was given in the past seven years; see e.g. [9,11,12,14,
34,35,37–40]. The capacity of a WOM was also rigorously inves-
tigated. The maximum sum-rate as well as the capacity regions
were studied in [19,33,36] with extensions to the non-binary case
in [16]. The implementation of WOM codes in several applications
such flash memories and phase-change memories was recently
explored in [26,30,31,41,42]. These works were motivated by the
system implementation on WOM codes in these memories, while
taking into account the hardware and architecture limitations
when implementing these codes into the system.

Write-once memory should not be confused with sticky reg-
isters as defined by Plotkin [32], which in some recent systems
literature (e.g. [8]) have been described as registers with write-
once semantics. Sticky registers initially hold a default ‘‘empty’’
value, and any write after the first has no effect. Such registers
are equivalent to consensus objects, and thus significantly more
powerful than standard shared memory. In contrast, write-once
memory as considered here and in the WOM code literature is
weaker than standard shared memory.



Download English Version:

https://daneshyari.com/en/article/6875072

Download Persian Version:

https://daneshyari.com/article/6875072

Daneshyari.com

https://daneshyari.com/en/article/6875072
https://daneshyari.com/article/6875072
https://daneshyari.com

