
Please cite this article in press as: T. Menouer, Solving combinatorial problems using a parallel framework, J. Parallel Distrib. Comput. (2017),
http://dx.doi.org/10.1016/j.jpdc.2017.05.019.

J. Parallel Distrib. Comput. () –

Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

Solving combinatorial problems using a parallel framework
Tarek Menouer
Paris-Nanterre University, LIP6 Laboratory, CNRS UMR 7606, Paris, France

h i g h l i g h t s

• Multiple pools of nodes shared between threads.
• A new computation model based on combining node and tree oriented parallelization.
• Hybridization of the two solutions.
• Good results are obtained for solving combinatorial problems using IBobpp framework.

a r t i c l e i n f o

Article history:
Received 19 September 2016
Received in revised form 17 May 2017
Accepted 24 May 2017
Available online xxxx

Keywords:
Combinatorial problems
Search algorithms
Parallelism
Cluster

a b s t r a c t

This paper presents a new IBobpp framework which is an improvement of a high level parallel pro-
gramming framework called Bobpp to optimize the performance of solving combinatorial problems. The
Bobpp parallel computation model is as the majority of parallel models proposed in the context of tree
search algorithms with node oriented parallelization, meaning that at every step of the algorithm, each
thread gets one node from a unique global pool of non-explored nodes, generates the child nodes, and
reinserts them into the pool to be explored later. This classical model has two drawbacks. First, the
use of many threads creates a bottleneck problem. Second, grabbing a node causes memory contention
problem when many nodes are generated and inserted into the same pool. To solve these problems,
IBobpp framework proposes three solutions. The first consists of using multiple pools of nodes shared
between all threads. The second solution consists of using a new computation model. The third solution
consists of hybridization of the two previous solutions. Preliminary result shows that IBobpp gives a good
result using the third solution.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

The parallelization of exact methods used to solve combinato-
rial problems have been widely studied in the literature, including
but not limited to the work presented in [13,21,22,24,38,39,45].
These problems belong to the NP-Hard complexity class of prob-
lems. In worst case scenarios, they require exponential time to be
exactly solved. Therefore, it is logical to reduce the computation
time using parallel computers.

Several parallel versions of the family of tree search algorithms
are proposed in the literature, such as the parallelization of Di-
vide and Conquer (D&C), Branch and Bound (B&B), Branch and
Price (B&P), Branch and Cut (B&C) and Constraint programming
(CP).1 There also exist many software frameworks which have
been proposed to support the rapid development of tree search
algorithms. Some of them are purely sequential, whereas others
are parallel. For instance, the following works represent some of

E-mail address: tarek.menouer@lip6.fr.
1 Constraint programming is sometimes called Branch and Infer.

this software family: BCP [43], PEBBL [18], PICO [17], ALPS [47],
Bobpp [23], PUBB [44], PPBB [46]. For parallel CP solvers, several
works are presented in [9,25,40]. We refer as example Gecode [37]
and ILOG Parallel Solver [40].

All these frameworks propose an application programming in-
terface based on an abstract type for a tree search node and an ab-
stract type for a solution. The tree search algorithm implemented
in each framework is based on these abstract node and solution
types. The application side defines, on the one hand, the concrete
node and solution type and, on the other hand, a function (or
method) that performs the search on one level. This means that
the function is used in each level of the search tree to expand one
node and generate new other nodes or solution nodes.

In the context of parallel machines, the biggest advantage of
this type of application interface is that it generates as many tasks
as possible. All generated nodes are inserted into a centralized
or distributed global pool. The different threads or processes that
execute the generation function can grab nodes from the pool
when needed. This computation model is called node oriented
parallelization that yields fine-grained parallelization. The global

http://dx.doi.org/10.1016/j.jpdc.2017.05.019
0743-7315/© 2017 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jpdc.2017.05.019
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
mailto:tarek.menouer@lip6.fr
http://dx.doi.org/10.1016/j.jpdc.2017.05.019

Please cite this article in press as: T. Menouer, Solving combinatorial problems using a parallel framework, J. Parallel Distrib. Comput. (2017),
http://dx.doi.org/10.1016/j.jpdc.2017.05.019.

2 T. Menouer / J. Parallel Distrib. Comput. () –

pool can be considered as a search scheduler, and thus it has the
responsibility of load balancing between threads. The node oriented
parallelizationmodel is used by several frameworks which support
the rapid development of tree search algorithm, as Bobpp [23]
framework. However, this computation model, and specially in
Bobpp framework, has the following two disadvantages [5]. First,
the use of many threads creates a bottleneck problem when all
threads want to take nodes at the same time. Second, grabbing a
node causes memory contention problem when many nodes are
generated and inserted into the same pool stored in the shared
memory. These two behaviors stress the memory bus and reduce
the overall performances of the parallel algorithm.

In this paper we propose a new framework called IBobppwhich
is an improvement of Bobpp framework. The code of IBobpp frame-
work is based onBobpp.However, the goal of IBobpp is tominimize
the Bobpp disadvantages by proposing three solutions. The first
one is to use several pools of nodes shared between all threads
rather than one pool. The second solution consists in proposing
a new computation model with coarse-grained parallelization.
This new model locally performs a large part of the search using
recursive search, in order to reduce the number of accesses to
the global memory due to node deletion or memory allocation.
The principle is to start the search by applying the node oriented
parallelizationmodel for the first level of the search tree to generate
new child nodes and insert them in the global pool of nodes,
while the rest of the search is performed on each CPU using a
previous tree oriented parallelization model. This previous model is
implemented in Bobpp [33], the search is done locally by recur-
sive search. Bobpp is used as a master tool that coordinates the
sequential solvers to complete the parallel search and to perform
the load balancing using work stealing. This latter is a popular load
balancing technique where each parallel thread keeps track of its
own work and occasionally steals work from the other threads
to keep itself busy [10]. The third proposed solution by IBobpp
is another computation model which combines the two previous
solutions. The principle of this model is very simple; It consists
of performing the combining node and tree oriented parallelization
modelwith several pools of nodes.

The rest of this document is structured as follows. Sec-
tion 2 presents related work and some combinatorial optimization
frameworks proposed in the literature. Section 3 describes the
Bobpp framework design and the methods used to parallelize the
exploration of the search space using shared and distributedmem-
ory architectures. Section 4 presents the new IBobpp framework.
Section 5 shows some experiments using the IBobpp framework.
Finally, Section 6 contains the concluding remarks and provides
directions for future work.

2. Related work

Several frameworks for solving combinatorial problems have
been proposed in the literature, including as example BCP [43],
PEBBL [18], PICO [17], ALPS [47], PUBB [44], PPBB [46]. All of these
frameworks can be classified according to two major criteria:

1. The node search algorithm involved in the search process.
These algorithms include Divide and Conquer (D&C), Branch
and Bound (B&B) and its derived algorithms, Branch and
Price (B&P), Branch and Cut (B&C), etc.

2. The parallel programming environment used to imple-
ment the parallelization: PThreads, OpenMP, MPI, PVM, etc.

For instance, the framework PPBB [46] proposes a Branch and
Bound interface parallelized on a distributed architecture using
PVM. BCP [43] is an implementation of the Branch-and-Price-and-
Cut algorithm, which runs only with MPI.

Some other frameworks diversify their proposed functionali-
ties. For example, SYMPHONY [42] solves Mixed-Integer Program-
ming (MIP) problems using PVM for distributedmemorymachines
or OpenMP for shared memory machines. ALPS [47], which is in
some ways a successor to SYMPHONY and BCP, it generalizes the
node search to any search tree including the Branch and Bound
search among others. However, the only available programming
environment for ALPS is MPI [47]. In a similar manner, PEBBL [18]
integrates the Branch and Bound search from PICO [17], allowing
the implementation of a larger variety of solvers than MIP solvers.
For information, PEBBL and PICO are part of the ACRO project [1],
while ALPS, BCP, SYMPHONY are part of the COIN-OR project [12].

As presented in Table 1, many of the available parallel search
algorithm frameworks are specialized with respect to the imple-
mented algorithm and the parallel programming environment.
However, the novelty of the parallel IBobpp andBobpp frameworks
compared to other frameworks is that it provides several search
algorithms classes while being able to use different parallelization
methods. The aim is to propose a single framework for the most of
classes of combinatorial problems, which can be solved on asmany
different parallel architectures as possible.

In the literature, the search space generated by Branch and
Bound, Branch and Cut, Branch and Price and Divide and Conquer
algorithms is similar to the search space of the algorithms used
in Constraint Programming (CP). CP algorithms are used to solve
combinatorial problems of great complexity, such as scheduling
problems [3]. Several studies have been realized to parallelize
CP search space, including the studies presented in [9,25,40]. In
the literature, there are also several parallel CP solvers, such as
Gecode [37], Parallel COMET [35] and ILOG Parallel Solver [40].

In the parallelization context, the majority of parallel frame-
works or CP solvers are based on a unique global pool of nodes
used as a search scheduling with a work stealing technique [10].
The use of a unique pool has two problems: bottleneck which can
be created using many threads and memory contention which can
be created by grabbing nodes. To solve these problems,wemention
the following studies.

Michel et al. [34] propose to use a static parallelization without
communication between threads. The principle is to generate and
insert a fixed number of tasks in a unique global pool, then assign
each task to one thread. The goal is that each thread works in its
task locally without looking for new tasks in the global pool. The
drawback of this static parallelization is thatwhen a thread finishes
its work, it waits until a solution is found. To address this problem,
Evtushenko et al. [20] propose to use two pools of tasks, one global
shared between all threads and a second local inside each thread.
During N iterations, each thread generates new tasks and saves
them in the local pool. At the end of the N iterations, threads
transfer part of their tasks to the global pool.When the local pool is
empty, the threads pick up tasks from the global pool. To limit the
number of generated nodes, authors propose to insert a new node
in the global pool only if there exists at last one thread blocked
and waiting for a new node. The search ends when all threads
are blocked and the global pool is empty. Furthermore, Fischetti
et al. [36] propose to save a set of tasks in a global pool, then assign
each task to one core according to a deterministic function. To
limit the number of generated tasks, authors propose to generate
a new task only if the thread detects that it works on a difficult
task using an estimation function. There are other studies based
on work stealing to assure a good load balancing [8,10]. We cite as
example the study proposed by Anderson et al. [2]. It is based on
a master–slaves approach. The master consists to distribute tasks
to all slaves. When a slave completes its computation, it sends
the results to the central master which provides it with a new
task. The master has also the responsibility of work units sharing,
communication of the best solution and termination detection.

Download English Version:

https://daneshyari.com/en/article/6875079

Download Persian Version:

https://daneshyari.com/article/6875079

Daneshyari.com

https://daneshyari.com/en/article/6875079
https://daneshyari.com/article/6875079
https://daneshyari.com

