
Please cite this article in press as: R. Polig, et al., A hardware compilation framework for text analytics queries, J. Parallel Distrib. Comput. (2017),
http://dx.doi.org/10.1016/j.jpdc.2017.05.015.

J. Parallel Distrib. Comput. () –

Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

A hardware compilation framework for text analytics queries
Raphael Polig a,*, Kubilay Atasu a, Heiner Giefers a, Christoph Hagleitner a,
Laura Chiticariu b, Frederick Reiss b, Huaiyu Zhu b, Peter Hofstee c

a IBM Research — Zurich, Saumerstr.4, Rueschlikon, Switzerland
b IBM Research — Almaden, 650 Harry Road, 95120-6099 San Jose, CA, USA
c IBM Research — Austin, 11501 Burnet Road, 78758-3400 Austin, TX, USA

h i g h l i g h t s

• A complete hardware compilation framework is presented that transforms text analytics queries into a synthesizable hardware description.
• The accelerator architecture is coherently integrated with a general purpose processor demonstrating an up to 60 times faster processing rate.
• The performance of two generations of systems is evaluated demonstrating the improvements gained by advances in technology.

a r t i c l e i n f o

Article history:
Received 12 May 2016
Received in revised form 19 May 2017
Accepted 24 May 2017
Available online xxxx

Keywords:
Text analytics
FPGA
Query compilation
Accelerator

a b s t r a c t

Unstructured text data is being generated at an unprecedented rate in the form of Twitter feeds, machine
logs or medical records. The analysis of this data is an important step to gaining significant insight
regarding innovation, security and decision-making. The performance of traditional compute systems
struggles to keep up with the rapid data growth and the expected high quality of information extraction.
To cope with this situation, a compilation framework is presented that can transform text analytics
queries into a hardware description. Deployed on an FPGA, the queries can be executed 60 times faster on
average compared to a multi-threaded software implementation. The performance has been evaluated
on two generations of high-end server systems including two generations of FPGAs, demonstrating the
performance gains from advanced technology.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Digital data is being generated in every aspect of our daily
lives [13]. We create more than 2.5 billion gigabytes of data
per day [9], from sensor data to online shopping transactions.
A great part of this data is represented by un-structured and
semi-structured text documents. Such as the 500 million Twitter
messages per day [11], uncountable number of daily news entries
around the world or fewer but more complex scientific research
papers. All of this data may or may not contain valuable informa-
tion for different groups of people such as medical scientists or
marketing experts [19]. Extracting the specific information from
this text-based data is the task of text analytics.

Althoughmany improvements have been applied to the under-
lying frameworks and algorithms, text analytics continues to be
computationally very intensive; also, because the level of detail at
which data is analyzed continues in order to increase to improve
the quality of the results achieved. Furthermore, these frameworks

* Corresponding author.
E-mail address: pol@zurich.ibm.com (R. Polig).

only benefit a little from new features in modern microprocessors
such as wide single-instruction multiple-data units [8]. This leads
to a performance gap between the ever faster growing amounts of
data and themoderate performance enhancements of new proces-
sor generations.

Text analytics can be easily parallelized as extraction queries
are run for each text document individually. Cloud computing
offers a way to cope with the lack of single node performance
by massively parallelizing the task on a large compute cluster.
Thus, each thread in a cluster can operate independently from
each other and will be utilized because the amount of data to be
analyzed can be scaled. But, this comes with a drop of efficiency
due to the increased management and communication overheads.
To counter this problem, system designers turn to heterogeneous
platformswhich include special purpose processors such as graph-
ics processing units (GPUs), digital signal processors (DSPs) or
field-programmable gate arrays (FPGAs).

This paper extends previous work [16,17] on an accelerator
framework for FPGAs that can execute query-based text ana-
lytics. The framework consists of a compiler that transforms a
user-specified query into a hardware description which is then

http://dx.doi.org/10.1016/j.jpdc.2017.05.015
0743-7315/© 2017 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jpdc.2017.05.015
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
mailto:pol@zurich.ibm.com
http://dx.doi.org/10.1016/j.jpdc.2017.05.015

Please cite this article in press as: R. Polig, et al., A hardware compilation framework for text analytics queries, J. Parallel Distrib. Comput. (2017),
http://dx.doi.org/10.1016/j.jpdc.2017.05.015.

2 R. Polig et al. / J. Parallel Distrib. Comput. () –

implemented on an FPGA. Additional operator modules and a set
of query optimizations are presented that improve the resource
utilization of the compiled queries. System integration is presented
where the FPGA is integrated into two generations of enterprise
server systems based on IBM’s POWER R⃝ processor. Using the co-
herent accelerator processor interface (CAPI) and it is predecessor,
the FPGA can operate as an integral part of a software process.
The framework is integrated into a Java application demonstrating
end-to-end acceleration for the evaluated queries. The main con-
tributions over previous work are

• Evaluation of the framework on anovel FPGAgeneration and
host system generation based on IBM’s POWER8 R⃝ proces-
sor.

• In-depth evaluation of the compiler optimizations that are
specifically applied to queries running on FPGAs.

• The performance on two different generations of systems is
evaluated, and it is demonstrated that both CPUs and FPGAs
benefit from a new semi-conductor technology generation.

• Power measurements are provided for both system genera-
tions using the in-system power management system.

Next, Section 2 will introduce the concept of query-based text
analytics before related work is outlined in Section 3. Section 4
presents the various operators and their according hardware im-
plementationswhich can be used by the compiler discussed in Sec-
tion 5. Software and system integration is described in Section 6.
The framework is evaluated on two enterprise server systems in
Section 7 before concluding this work.

2. Background

This work is based on text analytics systems, which utilize
rules to define the information which should be extracted from a
set of documents called a corpus. A representative framework is
SystemT [12], which was developed by a team at IBM Research —
Almaden and is used in several IBM products such as IBM Notes or
Infosphere BigInsights. It aims to overcome some of the difficulties
that arise from using cascaded grammar-based approaches and
their extensions. By simplifying the work-flow, the interaction
between various tasks becomesmaintainable and can be expressed
in a cleaner way. This also allows to decouple the way rules are
expressed in a language andhow theywill be executed by a system.

To achieve this, SystemT uses a declarative rule language
called Annotation Query Language (AQL), which is very similar to
the Structured Query Language (SQL) [5] known from relational
database applications. While keeping many relational operations
from SQL like e.g. Select, Union or Join, AQL adds text-level features
such as regular expressions and dictionary matching that operate
on an entire text document or a segment of it. Such an expressive
language allows users to define rules or queries in a modular and
maintainable way, and are independent of the actual implemen-
tation of the operators. Fig. 1 provides an example AQL query,
extracting person names from a text document. Entire queries are
often referred to as extractors.

SystemT is implemented in Java and consists of two main com-
ponents: a compiler and a runtime. In a first step, the AQL compiler
translates the query into an annotation operator graph (AOG). The
AOG is an acyclic dependency graph, where the nodes represent
individual operators that work on the incoming data of their input
edges. The optimizer then derives an execution plan for an AOG
by applying transformations and using a cost-based optimization
model. This can involve profiling the analysis of a set of reference
documents to choose the best performing execution plan.

Once the user is satisfied with the results the developed query
produces and the execution plan has been established, it can be
deployed on the SystemT runtime. The runtime can be embedded

Fig. 1. Example query written using the annotation query language (AQL).

into any Java application that requires text analytics capabilities.
This can range from local email clients to large analytics appli-
cations. In the latter case, SystemT is often deployed on a large
cluster of compute nodes using the Hadoop framework [1]. The
SystemT runtime executes the query plan individually on each
document it receives. The query plan is completely executed by
a single thread over an entire document. Thus, multiple threads
are running independently from each other and exploit parallelism
from the large number of individual documents. This type of large
scale analytics is usually running continuously, processing online
data, or for multiple hours on a given large set of documents.

Fig. 2 represents the annotation operator graph for the AQL
query shown in Fig. 1. The two main categories of operators used
are extraction operators and relational operators. The extraction
operators consist primarily of pattern matching steps such as
regular expression matching or dictionary matching and are run
over the entire document. This has the effect that these types of
operators are often located at the very top or beginning of an AOG.
These operators are creating a sequence of segments, whichmatch
the pattern they are looking for. Such segments are referred to
as Spans and are described using a character-based start offset
and an end offset. If an extraction operator follows a previous
extraction operator, it will operate within the spans produced by
its predecessor.

Inmost cases, the extraction operators are followed by a usually
larger number of relational operators. These operators operate on
the offset values of the spans produced by parent nodes, creating
a new set of spans. A prominent exception is the Select operation,
which when using a regular expression in its conditional expres-
sion requires access to the actual document data of the span it
currently operates on.

3. Related work

The presented system is the first to our knowledge that pro-
vides end-to-end acceleration of text analytics queries on unstruc-
tured data. This makes a quantitative comparison difficult. Other
work has focused on various components such as string pattern
matching for network intrusion detection or acceleration of rela-
tional database queries. The presented approach combines pattern
matching on unstructured data with the immediate execution of
relational algebra operations on a hardware platform. On a qual-
itative level, this section provides an overview of related work in

Download English Version:

https://daneshyari.com/en/article/6875095

Download Persian Version:

https://daneshyari.com/article/6875095

Daneshyari.com

https://daneshyari.com/en/article/6875095
https://daneshyari.com/article/6875095
https://daneshyari.com

