
J. Parallel Distrib. Comput. () –

Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

Keep it cool and in time: With runtime monitoring to thermal-aware
execution speeds for deadline constrained systems
Kai Lampka ∗, Björn Forsberg, Vasileios Spiliopoulos
Department of Information Technology, Uppsala University, Sweden

h i g h l i g h t s

• Dynamic power management for reducing heat emission in multicores.
• Run-time monitoring for tracking real-time workloads with respect to a bound.
• Introduces the concept of a worst-case ready queue for computing speed assignments.
• Speed assignment computation scheme that guarantee timing correctness of workloads.

a r t i c l e i n f o

Article history:
Received 29 September 2015
Received in revised form
18 January 2016
Accepted 2 March 2016
Available online xxxx

Keywords:
Real-time computing
Multicore architectures
Dynamic Voltage Frequency Scaling
Dynamic power and temperature
management

Run-time monitoring
Online real-time scheduling

a b s t r a c t

The Dynamic Power and Thermal Management (DPTM) system of Dynamic Voltage Frequency Scaling
(DVFS) enabled processors compensates peak temperatures by slowing or even powering parts of the
system down. While ensuring the integrity of computations, this comes with the drawback of losing
performance.

In the context of hard real-time systems, such unpredictable losses in performance are unacceptable,
as they may lead to deadline misses which may yet compromise the integrity of the system. To safely
execute hard real-time workloads on such systems, this article presents an online scheme for assigning
speeds in such away that (a) the systemexecutes at low clock speed as often as possible,while (b) deadline
violations are strictly ruled out.

The proposed scheme is compared with an offline scheme which has complete knowledge about
arrival times and execution demands of theworkload. The benchmarking shows that for aworkloadwhich
is always very close to the modelled maximum, our approach performs on-par with the offline scheme.
In case of a workload which diverges from the modelled maximum more often, the speed assignments
produced by our scheme become more pessimistic, as to ensure that all deadlines are met.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

1.1. Motivation

As Moore’s law continues to apply, the number of transistors
that can be put on a single chip continues to increase. This has
andwill give rise to thermal problems and power shortages within
processors, as it may not be possible to sufficiently cool or power
such a high density of transistors at once. These effects are further
amplified by increases in the clock frequencies applied to systems.

To counter the hazards introduced by these phenomena, mod-
ern processors are equipped with Dynamic Power and Thermal

∗ Corresponding author.
E-mail address: kai.lampka@it.uu.se (K. Lampka).

Management (DPTM) systems. The DPTM system monitors the
temperature or power budget of processor components, e.g., at
core-level, and takes different measures to ensure that set bounds
hold.

Examples of such measures are to adapt the capacity of the
cooling systems accordingly, or to simply power down unneeded
parts of the processor infrastructure. The latter policy is sometimes
referred to as dark silicon [5]. For multi-core processors that
support Dynamic Voltage Frequency Scaling, the darkening of parts
of the processor is unnecessary. Instead, the processor-proprietary
clocks can be throttled, at the expense of a loss of computing
performance. An example to this is illustrated in Fig. 1.

With hard real-time systems, workloads need to adhere to
deadline constraints. Examples of such workloads range from SW-
based control task up to distributed multi-media applications
where audio and video-frames need to be played synchronously
and in time. With unknown and possibly bursty arrival times of

http://dx.doi.org/10.1016/j.jpdc.2016.03.002
0743-7315/© 2016 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jpdc.2016.03.002
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
mailto:kai.lampka@it.uu.se
http://dx.doi.org/10.1016/j.jpdc.2016.03.002

2 K. Lampka et al. / J. Parallel Distrib. Comput. () –

Fig. 1. A 9-core processor and the functioning of a DPTM system.

computation demands, online DPTM with real-time workloads
is not straightforward. Particularly, as for real-time applications,
the loss in performance which results from interventions of the
DPTM system has the potential to lead to timing faults. As such,
and depending on the safety level of the application, the timing
faults have the potential to provoke faulty behaviour or even
the complete loss of a system. Consider, for example, a real-time
system tasked with controlling the pressure in a pipe. Should
the system not respond in a timely manner to changes in the
environment, the pressure may increase to such a level that the
pipe and any other systems connected to it may be damaged
beyond repair. To avoid this and in support of building reliable
and safe real-time systems on top of modernmulticore processors,
this article proposes an adaptive scheme for explicit clock speed
management of cores executing hard real-time workloads. To
minimize the interventions of the DPTM system on the remaining
cores, the scheme executes the real-time cores at the lowest
possible voltage/frequency level, as to not produce more heat than
absolutely necessary.

1.2. Contribution

This article presents an online DVFS scheme for explicitly
controlling the clock frequency of cores executing a hard real-
time workload. As main challenge, the scheme ensures that real-
time workloads do not experience timing faults, i.e.,misses of
deadlines, while keeping the interventions of the DPTM system to
a minimum.

In contrast to existing work, the presented scheme is aware of
the history of activations of processes, but does neither require the
explicit storage of activation times, nor is it restricted to highly
regular patterns of workload occurrences.

The small (and constant) memory and computation footprint,
makes this online scheme suitable for being implemented at the
lower levels of the HW/SW stack, i.e., either in specialized HW
or as part of an Real-time operating system. An implementation
of the workload tracking scheme with a FPGA-platform has been
presented in [10].

The scheme only requires two design time parameters. The
first is an upper bounding function on the arrivals of computation
requests (workloads) from an application w.r.t. the interval-of-
time domain (release bound function). In addition to this, the

scheme requires an application-uniform bound on the processing
time for any of these requests (worst-case execution time).

The article presents an evaluation of the presented scheme us-
ing the gem5hardware simulator. For investigating the capabilities
of the scheme, wemake use of predefined task activation traces, in
which the arrival times of computation requests are either regular
or irregular, with their individual execution times randomly cho-
sen.

The evaluation with this synthetic workload shows that for
workloads adhering close to the workload bounding function, the
scheme performs on-par with an offline implementation with
perfect knowledge about arrival times of processing requests and
their individual durations, i.e., execution times. With the traces of
workload arrivals diverging further from the (static) upper bound
on the number of arrivals per interval of time, the scheme starts
over-estimating required clock speeds. However, this pessimism
comes at the benefit that deadline misses are strictly ruled out,
even when the workload produces peaks in the computational
demand.

1.3. Organization

The following two sections present themodels andmechanisms
upon which the presented work builds. In particular, Section 2
presents the system and workload models, whereafter Section 3
presents the workloadmonitoring model. Section 4 introduces the
novel scheme, which is evaluated in Section 5. Lastly, the related
work is presented in Section 6 and we conclude in Section 7.

2. Background: systemmodel

The scheme relies on an abstract processormodel and a (formal)
real-time task model. The latter abstractly describes the workload
of the processing unit. Once thesemodels have been presented, we
provide an example which highlights the problem that the novel
scheme intends to solve.

2.1. Processor model

The processor is assumed to be a K -core DVFS capable
processor, executing a hard real-time workload. It is assumed that
each task within the system is mapped to a fixed core, and as such
there is no task migration between cores at runtime. This is done
to simplify the presentation. An extension to the case of migrating
tasks away from hot spots is out of scope of this work.

As the clock frequency f of the processor varies, so does the
execution time required to finish a job. However, estimating the
execution time of a job under different core frequencies is not
straightforward. The reason for this is that not all relevant system
components are affected by the frequency change. At higher clock
frequencies the processor is capable of executingmore instructions
per time unit, but the time that the processor has to wait for other
subsystems, such as off-core memory, remains constant. Because
of this, the execution time often increases less than proportionally
to the decrease of the clock frequency of the core.

As a (simplified) example, consider that the fetching of data
frommemory takes 100 cycles at clock frequency f . In this case, the
same fetch operation will only require 50 cycles at clock frequency
0.5 × f , as the memory operates at a constant speed, and each
clock cycle now takes twice as long. Assume that, in addition to
the cycles spent waiting for memory operations, the executing
program requires 100 cycles of calculations to finish. Under these
conditions, the program execution would take 100 + 100 = 200
cycles at speed f , but only 100 + 50 = 150 cycles at speed
0.5× f . In other words, scaling the frequency down by 1

2 only gives

a performance slowdown of
150

0.5×f
200
f

= 1.5.

Download English Version:

https://daneshyari.com/en/article/6875109

Download Persian Version:

https://daneshyari.com/article/6875109

Daneshyari.com

https://daneshyari.com/en/article/6875109
https://daneshyari.com/article/6875109
https://daneshyari.com

