J. Parallel Distrib. Comput. 86 (2015) 29-44

journal homepage: www.elsevier.com/locate/jpdc

Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

Modeling the availability of Cassandra

CrossMark

Carlos Pérez-Miguel *, Alexander Mendiburu, Jose Miguel-Alonso
Intelligent Systems Group, Department of Computer Architecture and Technology, The University of the Basque Country, UPV/EHU, Paseo Manuel de

Lardizabal, 1, 20018, San Sebastian-Donostia, Spain

HIGHLIGHTS

We model Cassandra under two different failure situations.
Our models provide information about the availability of Cassandra.
We validate our models through experimentation with a real system.

Several use cases of our models with real applications using Cassandra are given.

ARTICLE INFO ABSTRACT

Article history:

Received 23 September 2014
Received in revised form

27 July 2015

Accepted 9 August 2015
Available online 17 August 2015

Keywords:
Availability

Fault tolerance
Modeling techniques
Markov processes

Peer-to-Peer systems have been introduced as an alternative to the traditional client-server scheme.
Distributed Hash Tables, a type of structured Peer-to-Peer system, have been designed for massive storage
purposes. In this work we model the behavior of a DHT based system, Cassandra, with focus on its
fault tolerance capabilities, and more specifically, on its availability when facing two different situations:
(1) transient failures, those in which a node goes off-line for a while and returns on-line maintaining its
data, and (2) memory-less failures, those in which a node goes off-line and returns with no data. First, we
introduce two analytical models (one for each scenario) that provide approximations to the behavior of
Cassandra under different configurations, and secondly, in order to validate our models, we complete a
set of experiments over a real Cassandra cluster. Experimental results confirm the validity of the proposed
models of the availability of Cassandra. We also provide some examples of how these models can be used
to optimize the availability configuration of Cassandra-based applications.

Peer-to-peer
Distributed hash table

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Since the emergence of Peer-to-Peer (P2P) systems [48], which
where initially designed for file sharing, industry and academia
have paid attention to them as a powerful mechanism to support
other types of applications, such as massive storage systems, name
indexing or voice calls over IP.

Recent works on Distributed Hash Tables (DHT) [41], a type of
structured P2P storage system, have attracted attention because of
the possibilities that this type of systems offers in terms of avail-
ability, scalability and fault tolerance. One of these proposals is
Cassandra [26], a non-relational database system, proposed by
Facebook and based on the replication model of Amazon’s Dy-
namo [12]. This replication model is considered to be highly scal-
able, providing a high availability. However, we could ask ourselves

* Corresponding author.
E-mail addresses: carlos.perezm@ehu.es (C. Pérez-Miguel),
alexander.mendiburu@ehu.es (A. Mendiburu), j.miguel@ehu.es (J. Miguel-Alonso).

http://dx.doi.org/10.1016/j.jpdc.2015.08.001
0743-7315/© 2015 Elsevier Inc. All rights reserved.

how reliable these systems are. If we consider actual systems serv-
ing thousands of requests per unit of time, even small gaps of data
unavailability could correspond to large amounts of lost revenue.
In this work, we study the capability of Cassandra to deal with
node failures. To that extent, we have developed analytical models
of the availability of Cassandra when confronting two different
types of failures that resemble typical malfunction situations:

e Transient failures: those which imply the recovery of a failed
node after some time, without any loss of the already stored
information. However, note that these nodes will lose updates
during their off-line period. This type of failures can be caused
by network or power outages and node disconnections caused
by users (churning).

o Memory-less failures: this would include a total crash of the
hard drive of the node with total information loss, and the later
recuperation by partially or totally substituting the node and
repairing the data that should be stored in that node.

The models we propose are based on the stochastic modeling
of replica groups using Markov chains [29]. Markov chains

http://dx.doi.org/10.1016/j.jpdc.2015.08.001
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2015.08.001&domain=pdf
mailto:carlos.perezm@ehu.es
mailto:alexander.mendiburu@ehu.es
mailto:j.miguel@ehu.es
http://dx.doi.org/10.1016/j.jpdc.2015.08.001

30 C. Pérez-Miguel et al. / J. Parallel Distrib. Comput. 86 (2015) 29-44

are stochastic processes that obey the Markov property, which
establishes that future states of a system depend only on the
current state but not on the previous ones. More information about
these mathematical models can be found in [34].

As Cassandra’s replication model is based on Dynamo, these
models could also be applicable, with some effort, to the latter one
as well as to other systems based on it, such as LinkedIn Project
Voldemort [42] or Basho Riak [24]. The first model we present
depends only on the replication strategy of Cassandra, so it is
directly applicable to these systems. The second model comprises
the reparation processes implemented in Cassandra, which could
be different in each of these systems, so in order to adapt the model
to them, their reparation processes should be modeled properly.

In order to validate the proposed models, we have run differ-
ent experiments on a real Cassandra cluster simulating failures
and measuring system availability while performing sets of I/O op-
erations. We define the system as available when it successfully
replies when an operation is requested. We compare the availabil-
ity predicted by our models with that measured on the real system,
and conclude that our model accurately describes the availability
of Cassandra.

The rest of the paper is structured as follows. In Section 2 we
provide a summary of the related work about failure models in P2P
networks. Section 3 presents an overview of Cassandra and its main
characteristics. Section 4 explains the models that approximate
Cassandra’s behavior. In Section 5 we carry out a set of experiments
on a real system with the aim of comparing the results with the
availability provided by the theoretical models. In Section 6 we
can find several use cases showing how the models can be used to
analyze a variety of applications based on Cassandra. In Section 7
we present some conclusions and a discussion of future lines of
work.

2. Related work

To the best of our knowledge, this is the first work modeling
Cassandra’s availability. However, there are similar works close to
this that should be mentioned. In [10], Yahoo proposes a system
for benchmarking different cloud data-storage systems, the Yahoo
Cloud Serving Benchmark (YCSB). YCSB executes operations over
cloud systems in order to measure the performance and scalability
of these systems. As future improvements to this tool, Yahoo will
focus on reliability. At the time of writing this work, no progress
has been made in this area. Patil et al. propose in [31] the YCSB++
benchmark, built on top of YCSB. It provides extensions to improve
performance understanding and debugging of features such as
parallel testing with multiple YCSB clients, bulk-load testing
or weak consistency testing. This latter characteristic permits
measuring the latency of a “read after write” operation obtaining
updated data. This feature is similar to the model proposed by
Bailis et al. in [3], that allows characterizing the cost of eventual
consistency, computing the probability of obtaining stale data A
seconds after performing a write operation as a function of the
consistency level and the replica size. Note, though, that none
of these models and benchmarks are capable of computing the
availability of a storage system in the presence of failures.

Authors of [15] propose a failure model of P2PMP], a peer-to-
peer implementation of the Message Passing Interface (MPI) [16],
and use it to estimate the optimal degree of replication in this P2P
system.

Carra et al. [7] propose a work similar to ours over KAD [40],
a DHT based file sharing system without data replication. In KAD,
each node is responsible for the objects it stores. Each node pub-
lishes references to its objects in other nodes to help find data. Un-
like our proposal, they take into account only one type of failure,

memory-less failures, and consider that nodes are periodically re-
placed with new ones without reparation costs. Based on the the-
ory of reliability, they analyze the probability of finding an object
published in the system, and study how this probability evolves
over time. Finally, they use this model to propose improvements
in KAD that could reduce the cost of maintaining the availability of
the objects by reducing the amount of object references that can
be created in the system.

There are several reliability analyses of different redundancy
schemes in P2P networks, on which we have based this work tar-
geting Cassandra. Houri et al. investigate in [19] the behavior of
different replication and erasure code schemes (a form of forward
error correction) [35] using a non-stochastic reliability analysis to
estimate the probability of losing data and the cost of repairing
data. In [49] we can find a statistical analysis of replication vs. era-
sure code schemes whose conclusion is that using erasure codes
is less expensive in bandwidth terms, while it increases the Mean
Time To Failure by several orders of magnitude. However, in [46]
a stochastic analysis comparing erasure codes and replication con-
cludes that simple replication is better when peer availability is
low.

In [28] we can find an analysis of the impact of node churn in
different erasure code schemes when the availability periods of
nodes follow three different distributions: exponential, Pareto and
Weibull.

When analyzing the behavior of networked systems, some
works [9,43,4] assume independence between nodes. However,
in [14] Ford et al. prove that failures in a data-center where nodes
share switches and power units are not independent. Nevertheless,
in this work we assume independence between nodes in order
to reflect a wider range of situations, from volunteer desktop
computing systems to corporate data-centers.

With respect to the distribution of failures and recoveries, the
uptime and downtime of nodes are commonly modeled as ex-
ponentially distributed [9,43,6,38,23,11,44,50], although several
works [21,39] prove that the time between disk failures is not
exponentially distributed and exhibits autocorrelation and long-
range dependences, so authors argue that long-tail distributions
(such as Weibull) should be better approximations. Yet, in [14],
Ford et al. argue that, in large and heterogeneous environments,
the aggregation of large populations of disks with different ages
tends to be stable, so the failure rate should be stable as well. When
the failure rate is stable, there are no significant differences be-
tween both distributions. Therefore, in this work we have con-
sidered that modeling failures and recoveries using exponential
distributions is a reasonable approximation.

3. An overview of the architecture of Cassandra

Cassandra is a distributed storage system based on the concept
of Distributed Hash Table (DHT) [41] that uses data replication
in order to improve availability. A DHT is a structured peer-to-
peer system which stores {key, value} pairs. Most of the existing
DHTs use a look-up algorithm which permits the system to reach
any piece of data with a complexity of O(logm) hops, where m
is the number of nodes in the system. This is due to the use
of routing tables with partial information, usually with O(logm)
entries, obtaining a good trade-off between time and space costs.
However, in Cassandra, nodes are able to reach any point of the
system in constant time (O(1) complexity) at the expense of having
routing tables of size O(m) at each node.

In Cassandra, the data model is slightly different from a typical
DHT. Instead of storing single values, each value is a structured
tuple named Column Family. Each column of the tuple has a
name, a value and a timestamp. This data model, proposed in [8]
for Google’s BigTable, is becoming a popular alternative to the

Download English Version:

https://daneshyari.com/en/article/6875124

Download Persian Version:

https://daneshyari.com/article/6875124

Daneshyari.com

https://daneshyari.com/en/article/6875124
https://daneshyari.com/article/6875124
https://daneshyari.com

