
J. Parallel Distrib. Comput. () –

Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

Parallel processing of filtered queries in attributed semantic graphs✩

Adam Lugowski a,∗, Shoaib Kamil b,∗, Aydın Buluç c,∗, Samuel Williams c,
Erika Duriakova d, Leonid Oliker c, Armando Fox e, John R. Gilbert a
a Department of Computer Science, University of California, Santa Barbara, USA
b CSAIL, Massachusetts Institute of Technology, Cambridge, USA
c CRD, Lawrence Berkeley National Laboratory, Berkeley, USA
d School of Computer Science and Informatics, University College Dublin, Ireland
e EECS Department, University of California, Berkeley, USA

h i g h l i g h t s

• Domain-specific language for flexible filtering and customization of graph algorithms.
• Roofline performance model for high-performance graph exploration.
• Experimental demonstration of excellent performance and scaling.
• Demonstration of the generality by specializing two different graph algorithms.

a r t i c l e i n f o

Article history:
Received 19 November 2013
Received in revised form
6 June 2014
Accepted 17 August 2014
Available online xxxx

Keywords:
Graph analysis systems
Attributed semantic graphs
Graph filtering
Parallel computing
Knowledge discovery
Domain-specific languages
SEJITS
High-performance graph analysis

a b s t r a c t

Execution of complex analytic queries on massive semantic graphs is a challenging problem in big-data
analytics that requires high-performance parallel computing. In a semantic graph, vertices and edges carry
attributes of various types and the analytic queries typically depend on the values of these attributes. Thus,
the computationmust view the graph through a filter that passes only those individual vertices and edges
of interest. Previous investigations have developed Knowledge Discovery Toolbox (KDT), a sophisticated
Python library for parallel graph computations. In KDT, the user can write custom graph algorithms by
specifying operations between edges and vertices (semiring operations). The user can also customize ex-
isting graph algorithms bywriting filters. Although the high-level language for this customization enables
domain scientists to productively express their graph analytics requirements, the customized queries per-
formpoorly due to the overhead of having to call into the Python virtualmachine for each vertex and edge.

In this work, we use the Selective Embedded Just-In-Time Specialization (SEJITS) approach to au-
tomatically translate semiring operations and filters defined by programmers into a lower-level effi-
ciency language, bypassing the upcall into Python. We evaluate our approach by comparing it with the
high-performance Combinatorial BLAS engine and show that our approach combines the benefits of pro-
gramming in a high-level language with executing in a low-level parallel environment. We increase the
system’s flexibility by developing techniques that provide users with the ability to define new vertex and
edge types from Python. We also present a new Roofline model for graph traversals and show that we
achieve performance that is significantly closer to the bounds suggested by the Roofline. Finally, to fur-
ther understand the complex interaction with the underlying architecture, we present an analysis using
performance counters that quantifies the improvement in hardware behavior in the context our SEJITS
methodology. Overall, we demonstrate the first known solution to the problem of obtaining high perfor-
mance from a productivity languagewhen applying graph algorithms selectively on semantic graphswith
hundreds of millions of edges and scaling to thousands of processors for graphs.

© 2014 Elsevier Inc. All rights reserved.

✩ This paper is the extended version of the conference paper ‘‘High-productivity
and high-performance analysis of filtered semantic graphs’’ that was presented at
the 2013 IEEE International Parallel & Distributed Processing Symposium.
∗ Corresponding authors.

E-mail addresses: alugowski@cs.ucsb.edu (A. Lugowski), skamil@mit.edu
(S. Kamil), abuluc@lbl.gov (A. Buluç).

http://dx.doi.org/10.1016/j.jpdc.2014.08.010
0743-7315/© 2014 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jpdc.2014.08.010
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
mailto:alugowski@cs.ucsb.edu
mailto:skamil@mit.edu
mailto:abuluc@lbl.gov
http://dx.doi.org/10.1016/j.jpdc.2014.08.010

2 A. Lugowski et al. / J. Parallel Distrib. Comput. () –

1. Introduction

Large-scale graph analytics is a central requirement of bioin-
formatics, finance, social network analysis, national security, and
many other fields that deal with ‘‘big data’’. Going beyond simple
searches, analysts use high-performance computing systems to ex-
ecute complex graph algorithms on large corpora of data. Often,
a large semantic graph is built up over time, with the graph ver-
tices representing entities of interest and the edges representing
relationships of various kinds—for example, social network con-
nections, financial transactions, or interpersonal contacts.

In a semantic graph, edges and/or vertices are labeled with at-
tributes thatmight represent a timestamp, a type of relationship, or
a mode of communication. An analyst (i.e. a user of graph analyt-
ics) may want to run a complex workflow over a large graph, but
wish to only use those graph edges whose attributes pass a filter
defined by the analyst.

The Knowledge Discovery Toolbox [30] is a flexible, Python-
based, open-source toolbox for implementing complex graph
algorithms and executing them on high-performance parallel
computers. KDT achieves high performance by invoking linear-
algebraic computational primitives supplied by a parallel C++/
MPI backend—the Combinatorial BLAS [10]. Combinatorial BLAS
uses broad definitions of matrix and vector operations. The user
can define custom callbacks to override the semiring scalar mul-
tiplications and additions that correspond to operations between
edges and vertices.

Filters act to enable or disable KDT’s action (the semiring op-
erations) based on the attributes that label individual edges or
vertices. The programmer’s ability to specify custom filters and
semirings directly in a high-level language like Python is crucial
to ensure high-productivity and customizability of graph analysis
software. This paper presents new work that allows KDT users to
define filters and semirings in Python without paying the perfor-
mance penalty of upcalls to Python.

Filters raise performance issues for large-scale graph analysis.
In many applications it is prohibitively expensive to run a filter
across an entire graph data corpus, and produce (‘‘materialize’’)
a new filtered graph as a temporary object for analysis. In ad-
dition to the obvious storage problems with materialization, the
time spent during materialization is typically not amortized by
many graph queries because the user modifies the query (or just
the filter) during interactive data analysis. The alternative is to fil-
ter edges and vertices ‘‘on the fly’’ during execution of the com-
plex graph algorithm. A graph algorithms expert can implement
an efficient on-the-fly filter as a set of primitive Combinatorial
BLAS operations coded in C/C++ and incur a significant produc-
tivity hit. Conversely, filters written at the KDT level, as predicate
callbacks in Python, are productive, but incur a significant perfor-
mance penalty.

Our solution to this challenge is to apply Selective Just-In-
Time Specialization techniques from the SEJITS approach [12].
We define two semantic-graph-specific domain-specific languages
(DSL): one for filters and one for the user-defined scalar semiring
operations for flexibly implementing custom graph algorithms.
Both DSLs are subsets of Python, and they use SEJITS to implement
the specialization necessary for filters and semirings written in
that subset to execute efficiently as low-level C++ code. Unlike
writing a compiler for the full Python language, implementing
our DSLs requires much less effort due to their domain-specific
nature. On the other hand, our use of existing SEJITS infrastructure
preserves the high-level nature of expressing computations in
Python without forcing users to write C++ code.

We demonstrate that SEJITS technology significantly acceler-
ates Python graph analytics codes written in KDT, running on clus-
ters and multicore CPUs. An overview of our approach is shown in

Fig. 1. Overview of the high-performance graph-analysis software architecture
described in this paper. KDT has graph abstractions and uses a very high-level
language. Combinatorial BLAS has sparse linear-algebra abstractions, and is geared
towards performance.

Fig. 2. Performance of a filtered BFS query, comparing three methods of
implementing custom semiring operations and on-the-fly filters. The vertical axis
is running time in seconds on a log scale; lower is better. From top to bottom,
the methods are: high-level Python filters and semiring operations in KDT; high-
level Python filters and semiring operations specialized at runtime by KDT+SEJITS
(this paper’smain contribution); low-level C++ filters implemented as customized
semiring operations and compiled into Combinatorial BLAS. The runs use 36 cores
(4 sockets) of Intel Xeon E7-8870 processors. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 1. SEJITS specialization allows our graph analytics system to
bridge the gap between the performance-oriented Combinatorial
BLAS and usability-oriented KDT.

The primary new contributions of this paper are:

1. A domain-specific language implementation that enables flex-
ible filtering and customization of graph algorithms with-
out sacrificing performance, using SEJITS selective compilation
techniques.

2. A new Roofline performance model [41] for high-performance
graph exploration, suitable for evaluating the performance of
filtered semantic graph operations.

3. Experimental demonstration of excellent performance scaling
to graphs with tens of millions of vertices and hundreds of mil-
lions of edges.

4. Demonstration of the generality of our approach by specializing
two different graph algorithms: breadth-first search (BFS) and
maximal independent set (MIS). In particular, theMIS algorithm
requiresmultiple programmer-defined semiring operations be-
yond the defaults that are provided by KDT.

Fig. 2 summarizes thework implemented in this paper, by com-
paring the performance of three on-the-fly filtering implementa-
tions on a breadth-first search query in a graph with 4 million
vertices and 64million edges. The chart shows time to perform the
query as we synthetically increase the portion of the graph that
passes the filter on an input R-MAT [28] graph of scale 22. The top,

Download	English	Version:

https://daneshyari.com/en/article/6875143

Download	Persian	Version:

https://daneshyari.com/article/6875143

Daneshyari.com

https://daneshyari.com/en/article/6875143
https://daneshyari.com/article/6875143
https://daneshyari.com/

