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Replicated data types (rdts) concern the specification and implementation of data 
structures handled by replicated data stores, i.e., distributed data stores that maintain 
copies of the same data item on multiple devices. A distinctive feature of rdts is that 
the behaviour of an operation depends on the state of the replica over which it performs, 
and hence, its result may differ from replica to replica. Abstractly, rdts are specified 
in terms of two relations, visibility and arbitration. The former establishes whether an 
operation observes the effects of the execution of another operation, the latter is a total 
order on operations used to resolve conflicts between operations executed concurrently 
over different replicas. Traditionally, an operation of an rdt is specified as a function 
mapping a visibility and an arbitration into the expected result of the operation. This 
paper recasts such standard approaches into a denotational framework in which a data 
type is a function mapping visibility into admissible arbitrations. This characterisation 
provides a more abstract view of rdts that (i) highlights some implicit assumptions 
shared in operational approaches to specification; (ii) accommodates underspecification 
and refinement; (iii) enables a direct characterisation of the correct implementations of an
rdt in terms of a simulation relation between the states of a concrete implementation and 
of the abstract one determined by the specification.

© 2018 Published by Elsevier B.V.

1. Introduction

Distributed systems replicate their state over different nodes in order to satisfy several non-functional requirements, such 
as performance, availability, and reliability. It then becomes crucial to keep a consistent view of the replicated data. However, 
this is a challenging task because consistency is in conflict with two common requirements of distributed applications: 
availability (every request is eventually executed) and tolerance to network partitions (the system operates even in the 
presence of failures that prevent communication among components). In fact, it is impossible for a system to simultaneously 
achieve strong Consistency, Availability and Partition tolerance [1]. Since many domains cannot renounce availability or avoid 
network partitions, developers need to cope with weaker notions of consistency by allowing, e.g., replicas to (temporarily) 
exhibit some discrepancies, as long as they eventually converge to the same state.

This setting challenges the way in which data is specified: states, state transitions and return values should account for 
the different views that a data item may simultaneously have. Consider a data type Register: a memory cell that is read 
and updated by, respectively, operations rd and wr. In a replicated scenario, the value obtained when reading a register 
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Fig. 1. A scenario for the replicated data type Register.

after two concurrent updates wr(0) and wr(1) (i.e., updates taking place over different replicas) is affected by the way in 
which updates propagate among replicas: the result might be (i) undefined (when the read is performed over a third replica 
that has not received any of the updates), (ii) 0, or (iii) 1. Basically, the return value depends on the updates that are seen by 
that read operation. Choosing the return value is straightforward if a read sees just one update, less so if a read is performed 
over a replica that knows of both updates, since all replicas should consistently pick the same value among the available 
ones. A common strategy for registers is that the last-write wins: the last update is chosen when several concurrent updates 
are observed. This strategy implicitly assumes that all the events in a system can be arranged in a total order. Several recent 
approaches focus on the operational specification of replicated data types [2–9]. Usually, the specification describes the 
meaning of an operation in terms of two relations among events: visibility, which explains the causes for each result, and 
arbitration, which totally orders events. Consider the visibility relation V in Fig. 1a and the arbitrations A1 and A2 in Fig. 1b 
and Fig. 1c, respectively. The meaning of rd is such that rd(V , A1) = 1 and rd(V , A2) = 0. We remark that operational 
approaches require specifications to be functional: for every operation, visibility and arbitration, there is exactly one return 
value. In this way operational specifications commit to concrete policies for resolving conflicts.

This work aims at putting on firm grounds the operational approaches for rdts by giving them a purely functional 
description. In our view, rdts are functions that map visibility graphs (i.e., configurations) into sets of admissible arbitrations, 
i.e., all the executions that generate a particular configuration. In this setting, a configuration mapped to an empty set of 
admissible arbitrations stands for an unreachable configuration, i.e., a configuration that cannot be explained in terms of 
any arbitration. We rely on such an abstract view of rdts to highlight some of the implicit assumptions shared by most 
of the operational approaches. In particular, we characterise operational approaches, such as [2,3], as those specifications 
that satisfy three properties: besides the evident requirement of being (locally) functional (i.e., deterministic and total), they 
must be coherent (i.e., larger states are explained as the composition of smaller ones) and saturated (e.g., an operation that 
has not been seen by any other operation can be arbitrated in any position, even before the events that it sees). We show 
this inclusion to be strict and discuss some interesting cases that do not fall in this class. Moreover, we show that our 
formulation elegantly accounts for underspecification and refinement, which are standard notions in data type specification.

The notion of implementation correctness, which is central to the theory of abstract data types [10–12], relates the ex-
pected behaviour of a family of operations as defined by a specification with the one that is provided by a more concrete 
realisation. In a replicated scenario, such concrete realisations consist of several replicas that keep their own local state and 
propagate changes asynchronously. On the one hand, we assume that the behaviour of an implementation is given in terms 
of two labelled transition systems (ltss): one that describes a single replica and another, which is obtained by composition, 
that accounts for the joint behaviour of several replicas. Technically, this is achieved by providing a composition opera-
tor over ltss that reflects the adopted communication model. On the other hand, we note that our specifications have an 
implicit operational interpretation, which describes the expected behaviours of a single replica and of the composition of 
several replicas. Technically, each specification induces two ltss: one, called one-replica, prescribes the behaviour of a single 
replica, and another, called multi-replica, defines the behaviour of multiple replicas. Then, implementation correctness is de-
fined in terms of simulation relations between the ltss associated with an implementation, i.e., a replica or a set of replicas, 
with the lts corresponding to the specification, i.e., one-replica or multi-replica. We show that implementation correctness 
is preserved under standard parallel composition (synchronous or asynchronous buffered communication). Consequently, in 
order to show that an implementation is correct, we only need to show that a single replica is correct. We illustrate the 
approach with the implementation of a few well-known rdts.

The paper has the following structure. Section 2 introduces the basic definitions concerning labelled directed acyclic 
graphs. Section 3 discusses our functional mechanism for the presentation of Replicated Data Types. Section 4 compares our 
proposal with the classical operational one [4]. Section 5 studies the correctness of the replicated data types implementa-
tions with respect to our specifications. Finally, in the closing section we draw some conclusions, discuss related works, and 
highlight further developments.

This paper is a revised and extended version of [13]. We enrich our previous work by providing an approach to assess 
whether an implementation of an RDT on top of several concurrent replicas is correct (the material in § 5 is completely 
new to this paper). In addition, we provide full proofs of already published results.

2. Labelled directed acyclic graphs

In this section we recall the basics of labelled directed acyclic graphs, which are used for our description of replicated 
data types. We rely on countable sets E of events e, e′, . . . , e1, . . . and L of labels �, �′, . . . , �1, . . .
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