
Science of Computer Programming 166 (2018) 89–119

Contents lists available at ScienceDirect

Science of Computer Programming

www.elsevier.com/locate/scico

Towards naturalistic programming: Mapping 

language-independent requirements to constrained language 

specifications

Mariem Mefteh a,∗, Nadia Bouassida a, Hanêne Ben-Abdallah b

a Sfax University, Mir@cl Laboratory, Sfax, Tunisia
b King Abdulaziz University, Jeddah, KSA and Sfax University, Mir@cl Laboratory, Sfax, Tunisia

a r t i c l e i n f o a b s t r a c t

Article history:
Received 22 November 2016
Received in revised form 7 May 2018
Accepted 21 May 2018
Available online 29 May 2018

Keywords:
Natural language processing
Patterns
Semantics
Multilingual requirements
Use case scenarios

This research paper presents a new approach that constitutes a first step towards 
programming using language-independent requirements. To leverage the needed program-
ming effort, our approach takes requirements in the form of language-independent use 
case scenarios. Then, it generates the inputs of a code generator which, in turn, produces 
the corresponding code. To provide for the language-independence, our approach uses an 
enriched version of the semantic model, as a means to represent similar ideas possibly 
in different ways and in different natural languages. The enrichment consists of a set of 
patterns that it implements as XML code representing the information embedded in the 
use case scenarios. This intermediate representation can be processed to derive the inputs 
required by any code generator to produce code in a particular programming language. 
This paper illustrates the approach and its tool support for use case scenarios written 
in English and French, and semantic model patterns implemented as XML code that can 
be processed by the ReDSeeDS code generator. In addition, it presents the results of an 
experimental evaluation of the approach on use case scenarios (written in English and 
in French) belonging to five different systems. This evaluation quantitatively shows the 
ability of our approach: to extract ReDSeeDS inputs conforming to the expert’s inputs 
with a high precision; to generate XML code elements conforming to the input with an 
encouraging performance as evaluated by the participating students (an F-measure ranging 
between 87.43% and 92.31%); and to generate Java code judged efficient by the participating 
programmers (an F-measure ranging between 66.4% and 93.43%).

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

As argued by Knöll et al. [1], current programming techniques suffer from four main problems, namely the mental prob-
lem, the programming language problem, the natural language problem, and the technical problem. The mental problem
reflects the obligation of adjusting the program ideas to the conditions of a specific programming language (like restruc-
turing them in the form of classes, methods and attributes in the object-oriented languages). The programming language 
problem reflects the mandatory implementation of the same program ideas and algorithms in various ways depending on 
each programming language conditions. The natural language problem stems from the fact that people, working together from 

* Corresponding author.
E-mail addresses: Mariem.mefteh.ch@gmail.com (M. Mefteh), Nadia.bouassida@isimsf.rnu.tn (N. Bouassida), HBenAbdallah@kau.edu.sa (H. Ben-Abdallah).

https://doi.org/10.1016/j.scico.2018.05.006
0167-6423/© 2018 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.scico.2018.05.006
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/scico
mailto:Mariem.mefteh.ch@gmail.com
mailto:Nadia.bouassida@isimsf.rnu.tn
mailto:HBenAbdallah@kau.edu.sa
https://doi.org/10.1016/j.scico.2018.05.006
http://crossmark.crossref.org/dialog/?doi=10.1016/j.scico.2018.05.006&domain=pdf


90 M. Mefteh et al. / Science of Computer Programming 166 (2018) 89–119

different countries, are obliged to document the developed software often in English, which makes the documentation task 
less productive and error prone. Finally, the technical problem occurs when developers spend most of their time thinking 
about and appropriately describing the main ideas embedded in the program [1]. The above problems result in time loss 
and lower productivity for software development companies.

Furthermore, due to the rapid progress of programming languages and their increasingly complex development environ-
ments, software developers find themselves in an endless race towards acquiring the necessary knowledge to be productive. 
While the underlying theory of programming languages is important to grasp in order to express the idea of a program, 
learning their syntax and structures should not be, however, a predicament to productivity. Indeed, instead of facing the 
actual challenging tasks of programming (describing, modeling and enhancing the actual idea of a program), programmers 
often end-up dealing with minor issues like choosing the right character set and doing number conversions.

To minimize the time of learning and wrestling with the programming languages’ syntax/structures, on the one hand, 
and to overcome the above four problems of current programming techniques, on the other hand, “naturalistic programming” 
[1] [2] [3] advocates expressing program ideas in a natural language and to transform them into programming language 
structures. By writing computer programs using a natural language, naturalistic programming provides for the generation of 
programs in various programming languages, as-needed and with low costs. After all, programmers transform their thoughts 
into particular programming languages, while the ideas are almost the same even when expressed in different languages.

As a first step towards naturalistic programming, we propose, in this paper, an approach and its Code Recovery tool 
(CRec-tool) for extracting source code from language-independent requirements. More specifically, our approach extracts a 
code conforming to an existing code generator’s syntax from requirements described as use case1 scenarios, one of the most 
commonly used forms of requirements specification. Use case scenarios describe the future system functionality, from the 
user’s perspective, with textual details that can be used to deduce/derive the internal system’s (code). Our approach has 
the merit of accepting language-independent use case scenarios: It does not require sentences in a special form (e.g., SVO 
sentences within the scenarios steps [8]), and it accepts quite complex and ambiguous sentence structures. To handle these 
challenges, our approach uses the semantic model (originally [9] [10]) which we enhanced by structuring it through patterns; 
these describe the semantic model entities and implement them in terms of XML code. We decided to rely on the XML 
language due to its standardized structure that can be manipulated by several tools. The proposed patterns implementation 
can be exploited for different purposes, such as automatic text translation, domain analysis for software product lines [11]
and source code generation – the focus of this paper. More specifically, the proposed patterns implementation are exploited 
to extract information from the use case scenarios in order to provide developers with useful code.

It is worth noting that several approaches were proposed to generate code from instructions written in a natural language 
(e.g., [12], [13], [14]). Some of these approaches follow model driven paths (e.g., [15] [16] [17] [18]). However, their majority 
is semi-automated and accepts inputs written in a syntax-controlled natural language, often only in the English language. In 
contrast, our approach removes these constraints thanks to the pattern-structured semantic model that it uses to generate 
a formal representation of the input language-independent scenarios. In addition, our approach benefits from the important 
advancement achieved in some projects like ReDSeeDS [8] for the code generation purpose: Our approach implements the 
semantic model patterns as inputs to any available code generator (ReDSeeDS in this paper). This makes our approach 
generic; that is, it can be used for any natural language (English and French are illustrated in this paper), and for any code 
generator (ReDSeeDS is illustrated in this paper). This merit is reached by implementing the semantic model patterns in 
XML code that is treated to extract the corresponding ReDSeeDS inputs which consist in RSL requirements and domain 
models. Furthermore, our approach generates Java code following the Model/View/Presenter (MVP) architectural pattern 
[19] which is a derivation of the Model/View/Controller (MVC) pattern. MVP keeps the same principles as MVC, except for 
the elimination of the interaction between the View and the Model layers, because it will be done through the Presenter 
layer. The MVP pattern is used mostly to build user interfaces (UI), and thus interactive systems. An interactive system is 
composed of GUIs (graphical user interfaces) and functional layers. The GUIs are rendered in the generated View layer and 
they enable the user to manipulate data. The functional layers contain the system treatment, performed in the Model layer 
in communication with the Presenter layer which organizes the data to be displayed in the View.

To show the advantages and limitations of our approach, this paper presents an experimental evaluation conducted by 
employing the CRec-tool on use case scenarios (written in English and in French) belonging to five different systems. This 
evaluation quantitatively examines the three stages of the approach. First, it shows the ability of our approach to extract 
the ReDSeeDS inputs conforming to the expert’s inputs with a high precision (between 78.38% and 93%). Second, based on 
students’ feedback, it shows that our approach generates XML code elements conforming to the input requirements with an 
F-measure ranging between 87.43% and 92.31%. Third, based on programmers’ feedback, it shows that the efficiency of the 
Java code produced by our tool on four software applications is encouraging with an F-measure ranging between 66.4% and 
93.43%.

The remainder of this paper is organized as follows: in Section 2, we overview approaches for information extraction 
from texts and source code generation from requirements. In Section 3, we present our approach and its tool for synthesizing 

1 In this paper, we adopt the original definition of “use case” as it was introduced by Jacobson [4]: “A use case is a specific way of using the system by using 
some part of the functionality. It constitutes a complete course of interaction that takes place between an actor and the system.” This notion has been explained by 
other researchers, such as Cockburn [5], Constantine et al. [6], Bittner [7], etc.



Download English Version:

https://daneshyari.com/en/article/6875157

Download Persian Version:

https://daneshyari.com/article/6875157

Daneshyari.com

https://daneshyari.com/en/article/6875157
https://daneshyari.com/article/6875157
https://daneshyari.com

