
Science of Computer Programming 166 (2018) 194–213

Contents lists available at ScienceDirect

Science of Computer Programming

www.elsevier.com/locate/scico

Orchestrating incomplete TOSCA applications with Docker

Antonio Brogi, Davide Neri, Luca Rinaldi, Jacopo Soldani ∗

Department of Computer Science, University of Pisa, Italy

a r t i c l e i n f o a b s t r a c t

Article history:
Received 18 December 2017
Received in revised form 6 July 2018
Accepted 11 July 2018
Available online xxxx

Keywords:
Cloud applications
TOSCA
Docker
Container reuse

Cloud applications typically integrate multiple components, each needing a virtualised 
runtime environment that provides the required software support (e.g., operating system, 
libraries). This paper shows how TOSCA and Docker can effectively support the orchestra-
tion of multi-component applications, even when their runtime specification is incomplete. 
More precisely, we first introduce a TOSCA-based representation of multi-component 
applications, and we illustrate how such representation can be exploited to specify only 
the application-specific components. We then present TosKeriser, a tool for automatically 
completing TOSCA application specifications, which can automatically discover the Docker-
based runtime environments that provide the software support needed by the application 
components. We also show how we fruitfully exploited TosKeriser in two concrete 
case studies. Finally, we discuss how the specifications completed by TosKeriser can be 
automatically orchestrated by already existing TOSCA engines.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Cloud computing permits running on-demand distributed applications at a fraction of the cost which was necessary 
just a few years ago [2]. This has revolutionised the way applications are built in the IT industry, where monoliths are 
giving way to distributed, component-based architectures. Modern cloud applications typically consist of multiple interacting 
components, which (compared to monoliths) permit better capitalising the benefits of cloud computing [11].

At the same time, the need for orchestrating the management of multi-component applications across heterogeneous 
cloud platforms has emerged [4,17]. The deployment, configuration, enactment and termination of the components forming 
an application must be suitably orchestrated. This must be done by considering all the dependencies occurring among 
the components forming an application, as well as the fact that each application component must run in a virtualised 
environment providing the software support it needs [13].

Developers and operators are currently required to manually select and configure an appropriate runtime environment 
for each application component, and to explicitly describe how to orchestrate such components on top of the selected 
environments [19]. As we discuss in Sect. 2, such process must then be manually repeated whenever a developer wishes to 
modify the virtual environment actually used to run an application component, e.g., because the latter has been updated 
and it now needs additional software support.

The current support for developing cloud applications should be enhanced. In particular, developers should be required 
to describe only the components forming an application, the dependencies occurring among such components, and the 
software support needed by each component [3]. Such description should be fed to tools capable of automatically selecting 

* Corresponding author.
E-mail address: soldani@di.unipi.it (J. Soldani).

https://doi.org/10.1016/j.scico.2018.07.005
0167-6423/© 2018 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.scico.2018.07.005
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/scico
mailto:soldani@di.unipi.it
https://doi.org/10.1016/j.scico.2018.07.005
http://crossmark.crossref.org/dialog/?doi=10.1016/j.scico.2018.07.005&domain=pdf


A. Brogi et al. / Science of Computer Programming 166 (2018) 194–213 195

Fig. 1. Running example: The application Thinking.

and configuring an appropriate runtime environment for each application component, and of automatically orchestrating the 
application management on top of the selected runtime environments. Such tools should also allow developers to change 
the virtual environment running an application component whenever they wish (e.g., by automatically replacing a previously 
selected environment with another satisfying the new/updated requirements of an application component).

In this paper, we present a solution geared towards providing such an enhanced support. Our solution is based on 
TOSCA [22], the OASIS standard for orchestrating cloud applications, and on Docker, the de-facto standard for cloud container 
virtualisation [24]. The main contributions of this paper are indeed the following:

• We propose a TOSCA-based representation for multi-component applications, which can be used to specify the compo-
nents forming an application, the dependencies occurring among them, and the software support that each component 
requires to effectively run.

• We present TosKeriser, a tool that automatically completes TOSCA application specifications, by discovering and includ-
ing Docker-based runtime environments providing the software support needed by the application components. The 
tool also permits changing — when/if needed — the runtime environment used to host a component.

The obtained application specifications can then be processed by orchestration engines supporting TOSCA and Docker (such 
as TosKer [7], for instance). Such engines will automatically orchestrate the deployment and management of the corre-
sponding applications on top of the given runtime environments.

This paper extends [5] by (a) extending the approach of [5] to permit hosting groups of software components on the 
same Docker container, by (b) providing a detailed description of the implementation of TosKeriser, and by (c) presenting 
two novel case studies comparing the orchestration of the management of applications with and without our solution (based 
on three KPIs) and illustrating the usefulness of groups.

The rest of the paper is organised as follows. Sect. 2 illustrates an example further motivating the need for an enhanced 
support for orchestrating the management of cloud applications. Sect. 3 provides some background on TOSCA and Docker. 
Sect. 4 shows how to specify application-specific components only, with TOSCA. Sect. 5 then presents our tool to automati-
cally determine appropriate Docker-based environments for hosting the components of an application. Sect. 6 illustrates the 
two case studies, while Sects. 7 and 8 discuss related work and draw some concluding remarks, respectively.

2. Motivating scenario

Consider the open-source web-based application Thinking,1 which allows its users to share their thoughts, so that all 
other users can read them. Thinking is composed by three interconnected components (Fig. 1), namely (i) a MongoDB storing 
the collection of thoughts shared by end-users, (ii) a Java-based REST API to remotely access the database of shared thoughts, 
and (iii) a web-based GUI visualising all shared thoughts and allowing to insert new thoughts into the database. As indicated 
in the documentation of the Thinking application:

(i) The MongoDB component can be obtained by directly instantiating a standalone Docker-based service, such as mongo,2

for instance.
(ii) The API component must be hosted on a virtualised environment supporting maven (version 3), java (version 1.8) and 

git (any version). The API must also be connected to the MongoDB.
(iii) The GUI component must be hosted on a virtualised environment supporting nodejs (version 6), npm (version 3) and 

git (any version). The GUI also depends on the availability of the API to properly work (as it sends GET/POST requests 
to the API to retrieve/add shared thoughts).

Docker containers work as virtualised environments for running application components [24]. However, we currently 
have to manually look for the Docker containers offering the software support needed by API and GUI (or to manually 

1 https://github .com /di -unipi -socc /thinking.
2 https://hub .docker.com /_ /mongo/.

https://github.com/di-unipi-socc/thinking
https://hub.docker.com/_/mongo/


Download	English	Version:

https://daneshyari.com/en/article/6875161

Download	Persian	Version:

https://daneshyari.com/article/6875161

Daneshyari.com

https://daneshyari.com/en/article/6875161
https://daneshyari.com/article/6875161
https://daneshyari.com/

