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The refinement calculus and type theory are both frameworks that support the specification 
and verification of programs. This paper presents an embedding of the refinement calculus 
in the interactive theorem prover Coq, clarifying the relation between the two. As a result, 
refinement calculations can be performed in Coq, enabling the interactive calculation of 
formally verified programs from their specification.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

The idea of deriving a program from its specification can be traced back to [10,12,16]. The refinement calculus [5,17,3]
defines a formal methodology that can be used to construct a derivation of a program from its specification step by step. 
Crucially, the refinement calculus presents single language for describing both programs and specifications.

Deriving complex programs using the refinement calculus is no easy task. The proofs and obligations can quickly become 
too complex to manage by hand. Once you have completed a derivation, the derived program must still be transcribed to a 
programming language in order to execute it – a process which can be rather error-prone [17, Chapter 19].

To address both these issues, we show how the refinement calculus can be embedded in Coq, an interactive proof 
assistant based on dependent types. Although others have proposed similar formalizations of the refinement calculus [4,13], 
this paper presents the following novel contributions:

• After giving a brief overview of the refinement calculus (Section 2), we begin by developing a library of predicate 
transformers in Coq, based on indexed containers [1,13], making extensive use of dependent types (Section 3). We 
define a refinement relation, corresponding to a morphism between indexed containers, enabling us to prove several 
simple refinement laws in Coq.

• Next we show how to embed effects, such as mutable state and general recursion, in Coq using a free monad. We assign 
semantics to programs in this monad using the predicate transformers and refinement relation we described previously 
(Section 4).

• These definitions give us the basic building blocks for formalizing derivations in the refinement calculus. They do, 
however, require that the derived program is known a priori. We address this and other usability issues (Section 5).
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• Finally, we validate our results by performing a small case study.1 In particular, we show how we can use this library 
to calculate interactively the key ingredients of a data structure for persistent arrays (Section 6).

2. Refinement calculus

The refinement calculus, as presented by Morgan [17], extends Dijkstra’s Guarded Command language with a new lan-
guage construct for specifications. The specification [pre, post] is satisfied by a program that, when supplied an initial state 
satisfying the precondition pre, can be executed to produce a final state satisfying the postcondition post. Crucially, this 
language construct may be mixed freely with (executable) code constructs.

Besides these specifications, the refinement calculus defines a refinement relation between programs, denoted by p1 � p2. 
This relation holds when forall P, wp(p1, P) ⇒ wp(p2, P), where wp denotes the usual weakest precondition semantics of a 
program and its desired postcondition. Intuitively, you may want to read p1 � p2 as stating that p2 is a ‘more precise 
specification’ than p1.

A program is said to be executable when it is free of specifications and only consists of executable statements. Morgan 
[17] refers to such executable programs as code. To calculate an executable program C from its specification S, you must 
find a series of refinement steps, S � M0 � M1 � ... � C. Typically, the intermediate programs, such as M0 and M1, mix 
executable code fragments and specifications.

To find such derivations, Morgan [17] presents a catalog of lemmas that can be used to refine a specification to an 
executable program. Some of these lemmas define when it is possible to refine a specification to code constructs. These 
lemmas effectively describe the semantics of such constructs. For example, the following law may be associated with the 
skip command:

Lemma 1 (skip). If pre ⇒ post, then [ pre, post ] � skip.

Besides such primitive laws, there are many recurring patterns that pop up during refinement calculations. For example, 
combining the rules for sequential composition and assignment, the following assignment lemma holds:

Lemma 2 (following assignment). For any term E,

[pre,post] � [pre,post [w\E]];w ::= E

We illustrate how these rules may be used to calculate the definition of a program from its specification. Suppose we 
would like to swap the values of two variables, x and y. We may begin by formulating the specification of our problem as:

[ x = X ∧ y = Y, x = Y ∧ y = X ]
Using the two lemmas we saw above, we can refine this specification to an executable program. The corresponding 

calculation is given in Fig. 1. Note that we have chosen to give a simple derivation that contains some redundancy, such as 
the final skip statement, but uses a modest number of auxiliary lemmas and definitions.

For such small programs, these derivations are manageable by hand. For larger or more complex derivations, it can be 
useful to employ a computer to verify the correctness of the derivation and even assist in its construction. In the coming 
sections we will develop a Coq library for precisely that.

3. Predicate transformers

In this section, we will assume there is some type S, representing the state that our programs manipulate. In Section 4
we will show how this can be instantiated with a (model of a) heap. For now, however, the definitions of specifications, 
refinement, and predicate transformers will be made independently of the choice of state.

We begin by defining a few basic constructions in Coq:

Definition Pred (A : Type) : Type := A → Type.

This defines the type Pred A of predicates over some type A. Using this definition we can define a subset relation between 
predicates as follows:

Definition subset (A : Type) (P1 P2 : Pred A) := forall x, P1 x → P2 x.

1 All the code and examples presented in this paper can be found online at https :/ /github .com /jalpuim /dtp-refinement.

https://github.com/jalpuim/dtp-refinement
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