
JID:SCICO AID:2085 /FLA [m3G; v1.213; Prn:20/04/2017; 17:31] P.1 (1-16)

Science of Computer Programming ••• (••••) •••–•••

Contents lists available at ScienceDirect

Science of Computer Programming

www.elsevier.com/locate/scico

A modular foreign function interface

Jeremy Yallop a,b,∗, David Sheets a,b, Anil Madhavapeddy a,b

a Docker, Inc., United States
b University of Cambridge, Computer Laboratory, United Kingdom

a r t i c l e i n f o a b s t r a c t

Article history:
Received 24 August 2016
Received in revised form 29 March 2017
Accepted 4 April 2017
Available online xxxx

Keywords:
Foreign functions
Functional programming
Modularity

Foreign function interfaces are typically organised monolithically, tying together the 
specification of each foreign function with the mechanism used to make the function 
available in the host language. This leads to inflexible systems, where switching from one 
binding mechanism to another (say from dynamic binding to static code generation) often 
requires changing tools and rewriting large portions of code.
We show that ML-style module systems support exactly the kind of abstraction needed 
to separate these two aspects of a foreign function binding, leading to declarative foreign 
function bindings that support switching between a wide variety of binding mechanisms — 
static and dynamic, synchronous and asynchronous, etc. — with no changes to the function 
specifications.
Note. This is a revised and expanded version of an earlier paper, Declarative Foreign Function 
Binding Through Generic Programming [19]. This paper brings a greater focus on modularity, 
and adds new sections on error handling, and on the practicality of the approach we 
describe.

© 2017 Published by Elsevier B.V.

1. Introduction

The need to bind and call functions written in another language arises frequently in programming. For example, an 
OCaml programmer might call the C function puts to display a string to standard output1:

int puts(const char *);

Before calling puts, the programmer must write a binding that exposes the C function as an OCaml function. Writing 
bindings presents many opportunities to introduce subtle errors [10,14,15], although it is a conceptually straightforward 
task: the programmer must convert the argument of the bound function from an OCaml value to a C value, pass it to puts, 
and convert the result back to an OCaml value.

In fact, bindings for functions such as puts can be produced mechanically from their type definitions, and tools that can 
generate bindings, such as swig [2], are widely available. However, using an external tool — i.e. operating on rather than in
the language — can be damaging to program cohesiveness, since there is no connection between the types used within the 
tool and the types of the resulting code, and since tools introduce types and values into a program that are not apparent in 
its source code.

* Corresponding author.
E-mail address: jeremy.yallop@cl.cam.ac.uk (J. Yallop).

1 For the sake of exposition the example is simple, but it captures the issues that arise when writing more realistic bindings.

http://dx.doi.org/10.1016/j.scico.2017.04.002
0167-6423/© 2017 Published by Elsevier B.V.

http://dx.doi.org/10.1016/j.scico.2017.04.002
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/scico
mailto:jeremy.yallop@cl.cam.ac.uk
http://dx.doi.org/10.1016/j.scico.2017.04.002


JID:SCICO AID:2085 /FLA [m3G; v1.213; Prn:20/04/2017; 17:31] P.2 (1-16)

2 J. Yallop et al. / Science of Computer Programming ••• (••••) •••–•••

This paper advocates a different approach, in which foreign functions such as puts are described using the values and 
types of the host language. More concretely, each C type constructor (int, *, char, and so on) becomes a value in OCaml, 
and each value that describes a function type can be interpreted to bind a function of that type. For example, here is a 
binding to the puts function, constructed from its name and a value representing its type:

let puts = foreign "puts" (str @→ returning int)

(Later sections expound this example in greater detail.)
Describing foreign language types using host language values results in a much closer integration between the two 

languages than using external tools. For example, the interface to swig is a C++ executable that generates OCaml code, and 
there is no connection between the C++ types used in the implementation of swig and the types of the generated OCaml 
code. In contrast, the type of the foreign function (which is expounded in detail in Section 2.2) is directly tied to the type 
of the OCaml function that foreign returns, since calls to foreign are part of the same program as the resulting foreign 
function bindings.

This improved integration has motivated implementations in a number of languages, including Common Lisp,2 Python3

and Standard ML [4]. However, although these existing designs enjoy improved integration, they do not significantly improve 
flexibility, since in each case the mechanism used to bind foreign functions is fixed. For example, Python’s ctypes module 
binds C functions using the libffi library,4 which constructs C calls entirely dynamically. The programmer who would 
like more performance or safety than libffi can offer can no longer use ctypes, since there is no way to change the 
binding mechanism.

This paper describes a design that extends the types-as-values approach using modular abstraction to support multiple 
binding mechanisms, including (i) a dynamic approach, backed by libffi, (ii) a static approach based on code generation, 
(iii) an inverted approach, which exposes host language functions to C, and several more interpretations, including (iv) bind-
ings that handle errno, and (v) bindings with special support for concurrency or cross-process calls. The key is using 
parameterised modules to abstract the definition of a group of bindings from the interpretation of those bindings, making 
it possible to supply various interpretations at a later stage. Each binding mechanism (i.e. each interpretation) is then made 
available as a module implementing three functions: the @→ and returning functions, which construct representations of 
types, and the foreign function, which turns type representations into bindings.

For concreteness this paper focuses on a slightly simplified variant of ocaml-ctypes (abbreviated ctypes), a widely-used 
library for calling C functions from OCaml that implements our design. As we shall see, the OCaml module system, with its 
support for abstracting over groups of bindings, and for higher-kinded polymorphism, provides an ideal setting.

1.1. Outline

This paper presents the ctypes library as a series of interpretations for a simple binding description, introduced in Sec-
tion 2. Each interpretation is presented as an implementation of the same signature, FOREIGN, which exposes operations for 
describing C function types. We gradually refine FOREIGN throughout the paper as new requirements becomes apparent.

Section 3 introduces the simplest implementation of FOREIGN, an interpreter which resolves names and builds calls to 
foreign functions dynamically.

Section 4 describes a second implementation of FOREIGN that generates OCaml and C code, improving performance and 
static type checking of foreign function bindings.

Section 5 shows how support for higher-order functions in foreign bindings extends straightforwardly to supporting 
inverted bindings, using the FOREIGN signature to expose OCaml functions to C.

Section 6 describes some additional interpretations of FOREIGN that support error handling and concurrency.
Section 7 explores a second application of the multiple-interpretation approach, using an abstract signature TYPE to 

describe C object layout, and giving static and dynamic interpretations of the signature.
Section 8 presents evidence for the practicality of the ctypes approach, touching on adoption, performance and some 

brief case studies.
Finally, Section 9 contextualizes our work in the existing literature.

2. Representing types

C types are divided into three kinds: object types describe the layout of values in memory, function types describe the 
arguments and return values of functions, and incomplete types give partial information about objects. Bindings descriptions, 
as for puts in the introduction, involve representations of both object types, such as int, and function types, such as 
int(const char *).

2 CFFI https :/ /common-lisp .net /project /cffi /manual /index .html.
3 ctypes https :/ /docs .python .org /2 /library /ctypes .html.
4 libffi https :/ /sourceware .org /libffi/.

https://common-lisp.net/project/cffi/manual/index.html
https://docs.python.org/2/library/ctypes.html
https://sourceware.org/libffi/


Download English Version:

https://daneshyari.com/en/article/6875169

Download Persian Version:

https://daneshyari.com/article/6875169

Daneshyari.com

https://daneshyari.com/en/article/6875169
https://daneshyari.com/article/6875169
https://daneshyari.com

