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Many software engineering tasks require analysis and verification of all behaviors relevant 
to the task. For example, all relevant behaviors must be analyzed to verify a safety or 
security property. An efficient algorithm must compute the relevant behaviors directly 
without computing all the behaviors. This is crucial in practice because it is computational-
ly intractable if one were to compute all behaviors to find the subset of relevant behaviors.
We present a mathematical foundation to define relevant behaviors and introduce 
the Projected Control Graph (PCG) as an abstraction to directly compute the relevant 
behaviors. We developed a PCG toolbox to facilitate the use of the PCG for program 
comprehension, analysis, and verification. The toolbox provides: (1) an interactive visual 
analysis mechanism, and (2) APIs to construct and use PCGs in automated analyses. The 
toolbox is designed to support multiple programming languages.
Using the toolbox APIs, we conducted a verification case study of the Linux kernel to assess 
the practical benefits of using the PCG. The study shows that the PCG-based verification is 
faster and can verify 99% of 66,609 instances compared to the 66% instances verified by 
the formal verification tool used by the Linux Driver Verification (LDV) organization. This 
study has revealed bugs missed by the formal verification tool. The second case study is 
an interactive use of the PCG Smart View to detect side-channel vulnerabilities in Java 
bytecode.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Accounting precisely for the execution behavior along each path of a Control Flow Graph (CFG) blows up the computa-
tional complexity: (1) the number of CFG paths grows exponentially with the number of non-nested branch nodes [1,2], and 
(2) path feasibility checks can incur an exponential computation [3–8]. Moreover, the number of paths blows up because of 
loop iterations.

In practice, the number of behaviors relevant to a task is often significantly smaller than the totality of behaviors. We 
present a mathematical foundation for computing relevant program behaviors as relevant base behaviors and relevant iterative 
behaviors. The goal is to compute the relevant behaviors directly without computing all possible behaviors. Based on the 
mathematical foundation, we introduce the Projected Control Graph (PCG) as an abstraction to directly compute the relevant 
behaviors.
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Along with the mathematical foundation, we present insightful examples to illustrate possibilities of the drastic reduction 
in the number of behaviors from all behaviors to the relevant behaviors. Next, we summarize results of applying our 
PCG-based verification to the Linux kernel to verify the pairing of Lock instances with corresponding Unlock instances on 
all feasible control flow paths [9]. A control flow path is feasible if the path can be taken during an actual execution, 
i.e., variable values can be attained to satisfy the conditions governing the path. The study includes three versions of the 
Linux kernel which altogether have 37 million lines of code and 66,609 Lock instances. We present a comparison with the 
formal verification tool that uses BLAST [10]. This BLAST tool has been a top performer in the annual software verification 
competition (SV-COMP) [11] and it is used by the Linux Driver Verification (LDV) organization [12]. The BLAST tool verifies 
43,766 (65.7%) of Lock instances as correctly paired (safe), and it is inconclusive (crashes or times out) on 22,843 instances. 
The BLAST tool does not find any unsafe instances and requires 172 hours and 56 minutes for its verification. Our PCG-based 
automated verification tool verifies 66,151 (99.3%) of Lock instances as safe, and it is inconclusive on 451 instances. Seven 
unsafe instances are found through our study, including an instance that was incorrectly verified as safe by the BLAST tool. 
The PCG-based tool required 3 hours and 24 minutes.

Our second study is to use the PCG interactively to analyze Java bytecode to detect side-channel vulnerabilities. A com-
pact PCG not only improves efficiency of an automated analysis, it also facilitates an interactive visual analysis and program 
comprehension. Using the Atlas Platform [13,14], we have designed a visual analysis mechanism, called the PCG Smart View, 
to use the PCG interactively.

The key research contributions are:

• A mathematical foundation to define and compute relevant behaviors as relevant base behaviors and relevant iterative 
behaviors.

• The PCG as a graph abstraction to directly compute the relevant behaviors and an efficient algorithm to compute the 
PCG.

• An assessment of the practical impact of using the PCG interactively and programmatically for analyzing or verifying 
large software.

The remainder of the paper is organized as follows. We first describe the class of software safety and security problems 
to which the mathematical foundation for computing relevant behaviors applies in Section 2. Next, Section 3 describes the 
mathematical foundation for computing relevant behaviors. Section 4 presents the linear-time algorithm for constructing 
the PCG from its corresponding CFG. The developed PCG toolbox is presented in Section 5. Section 6 presents our Linux ver-
ification study that assesses the practical benefits of using PCGs in automated analysis and for interactive analysis. Section 7
discusses the use of PCGs in detecting side-channel vulnerabilities. Section 8 presents the related work. Finally, we conclude 
in Section 9.

2. Software safety and security properties

This section describes a fairly broad class of software safety and security properties which can be verified efficiently 
using the PCG. In general, the PCG can be of significant value for program comprehension, analysis, and verification.

Definition 1 (2-event matching). Verify that an event e1(O ) is succeeded by an event e2(O ) on every feasible execution path, 
where the two events are operations on the same object O .

Besides the lock/unlock pairing verification described in this paper, the 2-event matching covers several problems such 
as memory allocation/deallocation pairing, or file open/close pairing. A number of vulnerabilities listed by the MITRE Cor-
poration [15] can be viewed as 2-event problems.

Definition 2 (2-event anti-matching). Verify that an event e1(O ) is not succeeded by an event e2(O ) on any feasible execution 
path, where the two events are operations on the same object O .

Anti-matching covers software security verification defined according to Confidentiality, Integrity, and Availability (CIA) 
triad [16]. A confidentiality verification problem could be defined as: a sensitive source must not be followed by a malicious 
sink on any feasible execution path. Similarly, an integrity verification problem could be defined as: an access to sensitive 
data must not be followed by a malicious modification to sensitive data on any feasible execution path.

The following defines the general class of verification tasks for applying the PCG.

Definition 3 (n-event verification). Verify on every feasible execution path, that the occurrence of events on the path follow 
the acceptability test defined by a Finite State Machine (FSM) φ(E), where E is a set of n events that operate on the same 
object O .
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