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Formal Proof of Dynamic Memory Isolation
Based on MMU�,��

Narjes Jomaa, David Nowak, Gilles Grimaud, Samuel Hym

CRIStAL, CNRS & Lille 1 University, France

Abstract

For security and safety reasons, it is essential to ensure memory isolation be-
tween processes. The memory manager is thus a critical part of the kernel of an
operating system. It is common for kernels to ensure memory isolation through
a piece of hardware called memory management unit (MMU). However an MMU
by itself does not provide memory isolation. It is only a tool the kernel can use
to ensure this property. In this paper we show how a proof assistant such as Coq
can be used to model a hardware architecture with an MMU, and an abstract
model of microkernel supporting preemptive scheduling and memory manage-
ment. We proceed by making formally explicit the consistency properties that
must be preserved in order for memory isolation to be preserved.
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1. Introduction

Modern operating-system kernels make it possible to share computer re-
sources between untrusted processes, and to rapidly deal with external events,
e.g., arrival of a network packet that would be lost if not dealt with immedi-
ately. In this context, both for safety and security reasons, it is important to
respectively prevent accidental and malevolent access by a process to an address
outside its own address space. On modern computers, kernels ensure memory
isolation with the help of a piece of hardware called memory management unit
(MMU). An MMU is a hardware component through which all memory accesses
must go. It translates a virtual memory address to a physical address if there is
indeed a corresponding one in the current setting. It also checks whether in the
current setting accessing this address is allowed. It is indeed a common design
to have the kernel space always mapped for efficiency reasons but not accessible
while in user mode. For this to work properly, the kernel has to maintain page
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