
Accepted Manuscript

Formal proof of dynamic memory isolation based on MMU

Narjes Jomaa, David Nowak, Gilles Grimaud, Samuel Hym

PII: S0167-6423(17)30133-8
DOI: http://dx.doi.org/10.1016/j.scico.2017.06.012
Reference: SCICO 2116

To appear in: Science of Computer Programming

Received date: 2 January 2017
Revised date: 22 June 2017
Accepted date: 25 June 2017

Please cite this article in press as: N. Jomaa et al., Formal proof of dynamic memory isolation based on MMU, Sci. Comput. Program.
(2017), http://dx.doi.org/10.1016/j.scico.2017.06.012

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing
this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is
published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all
legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.scico.2017.06.012


Formal Proof of Dynamic Memory Isolation
Based on MMU�,��

Narjes Jomaa, David Nowak, Gilles Grimaud, Samuel Hym

CRIStAL, CNRS & Lille 1 University, France

Abstract

For security and safety reasons, it is essential to ensure memory isolation be-
tween processes. The memory manager is thus a critical part of the kernel of an
operating system. It is common for kernels to ensure memory isolation through
a piece of hardware called memory management unit (MMU). However an MMU
by itself does not provide memory isolation. It is only a tool the kernel can use
to ensure this property. In this paper we show how a proof assistant such as Coq
can be used to model a hardware architecture with an MMU, and an abstract
model of microkernel supporting preemptive scheduling and memory manage-
ment. We proceed by making formally explicit the consistency properties that
must be preserved in order for memory isolation to be preserved.

Keywords: Formal proof, Memory isolation, Microkernel, Coq.

1. Introduction

Modern operating-system kernels make it possible to share computer re-
sources between untrusted processes, and to rapidly deal with external events,
e.g., arrival of a network packet that would be lost if not dealt with immedi-
ately. In this context, both for safety and security reasons, it is important to
respectively prevent accidental and malevolent access by a process to an address
outside its own address space. On modern computers, kernels ensure memory
isolation with the help of a piece of hardware called memory management unit
(MMU). An MMU is a hardware component through which all memory accesses
must go. It translates a virtual memory address to a physical address if there is
indeed a corresponding one in the current setting. It also checks whether in the
current setting accessing this address is allowed. It is indeed a common design
to have the kernel space always mapped for efficiency reasons but not accessible
while in user mode. For this to work properly, the kernel has to maintain page

�This work was partially supported by the Celtic-Plus Project ODSI C2014/2-12, CNRS
Action Spécifique Sécurité, and IRCICA USR 3380.

��A preliminary version of this work appeared in the proceedings of the 10th International
Symposium on Theoretical Aspects of Software Engineering (TASE 2016) [1].

Preprint submitted to SCP July 7, 2017



Download English Version:

https://daneshyari.com/en/article/6875188

Download Persian Version:

https://daneshyari.com/article/6875188

Daneshyari.com

https://daneshyari.com/en/article/6875188
https://daneshyari.com/article/6875188
https://daneshyari.com

