
JID:SCICO AID:2179 /FLA [m3G; v1.227; Prn:8/01/2018; 13:33] P.1 (1-23)

Science of Computer Programming ••• (••••) •••–•••

Contents lists available at ScienceDirect

Science of Computer Programming

www.elsevier.com/locate/scico

Reducing resource consumption of expandable collections: 

The Pharo case

Alexandre Bergel a,∗, Alejandro Infante a, Sergio Maass a, 
Juan Pablo Sandoval Alcocer a,b

a Pleiad Lab, DCC, University of Chile, Chile
b Universidad Mayor de San Simón, Bolivia

a r t i c l e i n f o a b s t r a c t

Article history:
Received 30 January 2017
Received in revised form 11 December 2017
Accepted 19 December 2017
Available online xxxx

Keywords:
Collection
Pharo
Lua
Profiling
Experiment

Expandable collections are collections whose size may vary as elements are added 
and removed. Hash maps and ordered collections are popular expandable collections. 
Expandable collection classes offer an easy-to-use API, however this apparent simplicity 
is accompanied by a significant amount of wasted resources.
We describe some improvements of the collection library to reduce the amount of waste 
associated with collection expansions. We have designed two new collection libraries 
for the Pharo programming language that exhibit better resource management than the 
standard library. We improved the Pharo collection library using two complementary 
perspectives.
First, across a basket of 5 applications, our optimized collection library significantly reduces 
the memory footprint of the collections: (i) the amount of intermediary internal array 
storage by 73%, (ii) the number of allocated bytes by 67% and (iii) the number of unused 
bytes by 72%. This reduction of memory is accompanied by a speedup of about 3% for most 
of our benchmarks.
Second, we looked for an alternative to the classical expandable collection. The Lua 
programming language offers a unique abstract data type called table. We designed, 
implemented, and introduced this data type in the Pharo programming language and 
we ran a number of micro and macro-benchmarks. Overall, replacing the standard Pharo 
collection library by one inspired on Lua’s table data type results in an execution speedup 
of up to 15% and a reduction of the memory consumption by up to 19%.
We analyzed the collection implementations of Java, C#, Scala, and Ruby: these imple-
mentations largely behave like Pharo’s, therefore with the same limitations. Our results are 
thus likely to benefit designers of future programming languages and collection libraries.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Creating and manipulating any arbitrary group of values is largely supported by today’s programming languages and 
runtimes [1]. A programming environment typically offers a collection library that supports a large range of variations in 
the way collections of values are handled and manipulated. Collections exhibit a wide range of features [1–3], including 

* Corresponding author.
E-mail address: abergel@dcc.uchile.cl (A. Bergel).

https://doi.org/10.1016/j.scico.2017.12.009
0167-6423/© 2017 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.scico.2017.12.009
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/scico
mailto:abergel@dcc.uchile.cl
https://doi.org/10.1016/j.scico.2017.12.009


JID:SCICO AID:2179 /FLA [m3G; v1.227; Prn:8/01/2018; 13:33] P.2 (1-23)

2 A. Bergel et al. / Science of Computer Programming ••• (••••) •••–•••

being expandable or not. An expandable collection is a collection whose size may vary as elements are added and removed. 
Expandable collections are highly popular among practitioners and have been the topic of a number of studies [4–7].

Expandable collections are typically implemented by wrapping a fixed-sized array. An operation on the collection is then 
translated into primitive operations on the array, such as copying the array, replacing the array with a larger one, inserting 
or removing a value at a given index.

Unfortunately, the simplicity of using expandable collections is counter-balanced by resource consumption when not 
adequately employed [4,5,8]. Consider the case of a simple ordered collection (e.g., ArrayList in Java and OrderedCollection in 
Pharo). Using the default constructor, the collection is created empty with an initial capacity of 10 elements. The 11th 
element added to it triggers an expansion of the collection by doubling its capacity. This brief description summarizes the 
behavior of most of the expandable collections in Java, C#, Scala, Ruby, and Pharo.

We have empirically determined that in Pharo a large portion of collections created by applications are empty. As a 
consequence, their internal arrays are simply unused. Moreover, only a portion of the internal array is used. After adding 
11 elements to an ordered collection, 9 of the 20 slot arrays are left unused. Situations such as this one scale up as soon as 
millions of collections are involved in a computation.

We have selected the Pharo programming language for our study. Pharo1 is an object-oriented dynamically typed pro-
gramming language which offers a large and rich collection library [9]. Pharo is syntactically close to Ruby and Objective-C. 
Conducting our experiment in Pharo has a number of benefits. Firstly, Pharo offers an expressive reflective API which greatly 
reduces the engineering effort necessary to modify and replace the collection library. Secondly, the open source commu-
nity that supports Pharo is friendly and is looking for contributions for improvement, which means that our results are to 
have a measurable impact across Pharo developers. In principle, our technique may be implemented in an highly optimized 
environment such as Java or .Net. However, we avoided a statically typed language for two reasons: (i) the runtime and 
the JIT depend on the Collection library,2 as such our measurements would measure the implementation of the JIT, which 
would radically change the focus of the article; (ii) it is unclear whether Lua’s tables may be implemented in a statically 
typed language (again, studying this question would change the focus on the present article). Appendix A briefly presents 
the syntax of Pharo.

This article is about measuring wasted resources in Pharo (memory and execution time) due to expandable collections. 
Improvements are then deduced and we measure their impact. We made two improvements to the Pharo collection library.

We improve first the way Pharo collection classes behave by using popular techniques: lazy object creation and recycling 
objects in a pool of frequently created objects. This article carefully evaluates the application of these well known techniques 
on the collection implementation. The analyses that this article describes focus on the profiling of over 6 million expandable 
collections produced by 15 different program executions. Note that our intent is not to prohibit a manual setting of the 
expansion strategy. Instead, we provide a simple mechanism to complement existing expandable collections.

Second, we looked for an alternative schema of the classical way expandable collections are implemented. Lua is a 
popular programming language that offers tables, a hybrid abstract data type combining features of sequential collections 
and dictionaries. We describe tables in Lua and compare their performance with the dictionary and the sequential ordered 
collection. Our experiments show that when replacing instances of the standard Pharo classes OrderedCollection and
Dictionary by our implementation of Lua’s tables, the memory allocation due to collections is decreased by up to 19% 
when executing long-running benchmarks that make extensive use of collections. It also has an impact on execution time, 
which is overall decreased, with a maximal reduction of 15%. Our novelty is about (i) porting tables to a language that 
contains a different library framework, (ii) adapting code using the Pharo standard library to use tables, and (iii) measuring 
the gain in terms of resource consumption.

The research questions we are pursuing are:

A – How to characterize the use of expandable collections in Pharo? Understanding how expandable collections are used is 
highly important in identifying whether or not some resources are wasted. And if this is case, how such waste occurs.

B – Can the overhead associated with expandable collections in Pharo be measured? Assuming the characterization of collection 
expansions revealed some waste of resources, measuring such waste is essential to properly benchmark improvements 
that are carried out either on the application or the collection library.

C – Can the overhead associated with expandable collections in Pharo be reduced? Assuming that a benchmark to measure 
resource waste has been established, this question focuses on whether the resource waste accompanying the use of a 
collection library can be reduced without disrupting programmer habits.

Our results show the Pharo collection library can be significantly improved by (i) considering lazy array creation and 
recycling those arrays, and (ii) by using hybrid collections (OrderedCollection and Dictionary). The expandable collections of Java, 
Scala, Ruby and C# are very similar to those of Pharo, and therefore largely exhibit the same deficiencies, as described in 
Section 10. We therefore expect our recommendations to be beneficial to these languages as well.

1 http :/ /www.pharo-project .org.
2 https :/ /stackoverflow.com /questions /33317720 /performance-of-collections-emptylist-and-empty-arraylist-with-jit-compiler.

http://www.pharo-project.org
https://stackoverflow.com/questions/33317720/performance-of-collections-emptylist-and-empty-arraylist-with-jit-compiler


Download English Version:

https://daneshyari.com/en/article/6875196

Download Persian Version:

https://daneshyari.com/article/6875196

Daneshyari.com

https://daneshyari.com/en/article/6875196
https://daneshyari.com/article/6875196
https://daneshyari.com

