
JID:SCICO AID:2171 /FLA [m3G; v1.227; Prn:14/12/2017; 15:38] P.1 (1-32)

Science of Computer Programming ••• (••••) •••–•••

Contents lists available at ScienceDirect

Science of Computer Programming

www.elsevier.com/locate/scico

Efficient parsing with parser combinators

Jan Kurš a,∗, Jan Vraný b, Mohammad Ghafari a, Mircea Lungu c, 
Oscar Nierstrasz a

a Software Composition Group, University of Bern, Switzerland
b Software Engineering Group, Czech Technical University, Czech Republic
c Software Engineering and Architecture Group, University of Groningen, Netherlands

a r t i c l e i n f o a b s t r a c t

Article history:
Received 3 January 2017
Received in revised form 12 November 2017
Accepted 1 December 2017
Available online xxxx

Keywords:
Optimizations
Parsing expression grammars
Parser combinators

Parser combinators offer a universal and flexible approach to parsing. They follow the 
structure of an underlying grammar, are modular, well-structured, easy to maintain, and 
can recognize a large variety of languages including context-sensitive ones. However, 
these advantages introduce a noticeable performance overhead mainly because the same 
powerful parsing algorithm is used to recognize even simple languages. Time-wise, parser 
combinators cannot compete with parsers generated by well-performing parser generators 
or optimized hand-written code.
Techniques exist to achieve a linear asymptotic performance of parser combinators, yet 
there is a significant constant multiplier. The multiplier can be lowered to some degree, 
but this requires advanced meta-programming techniques, such as staging or macros, that 
depend heavily on the underlying language technology.
In this work we present a language-agnostic solution. We optimize the performance of 
parsing combinators with specializations of parsing strategies. For each combinator, we 
analyze the language parsed by the combinator and choose the most efficient parsing 
strategy. By adapting a parsing strategy for different parser combinators we achieve 
performance comparable to that of hand-written or optimized parsers while preserving 
the advantages of parsers combinators.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

A parser combinator is a higher-order function that takes one or more parsers as input and produces a new parser as its 
output. Parser combinators [53,39] represent a popular approach to parsing. They are straightforward to construct, readable, 
modular, well-structured and easy to maintain. Parser combinators are also highly expressive as they can parse not only 
context-free languages but also some context-sensitive ones (e.g., layout-sensitive languages [24,2]).

Nevertheless, parser combinators at the moment are considered more a technology for prototyping than for actual de-
ployment, since the expressive power of parser combinators comes at the price of less efficiency. A parser combinator uses 
the full power of a Turing-equivalent formalism to recognize even simple languages that could be recognized by finite state 

* Corresponding author.
E-mail address: kurs@inf.unibe.ch (J. Kurš).
URLs: http://www.scg.unibe.ch (J. Kurš), http://www.swing.fit.cvut.cz (J. Vraný), http://www.cs.rug.nl/search (M. Lungu).

https://doi.org/10.1016/j.scico.2017.12.001
0167-6423/© 2017 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.scico.2017.12.001
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/scico
mailto:kurs@inf.unibe.ch
http://www.scg.unibe.ch
http://www.swing.fit.cvut.cz
http://www.cs.rug.nl/search
https://doi.org/10.1016/j.scico.2017.12.001


JID:SCICO AID:2171 /FLA [m3G; v1.227; Prn:14/12/2017; 15:38] P.2 (1-32)

2 J. Kurš et al. / Science of Computer Programming ••• (••••) •••–•••

machines or pushdown automata. Consequently, parser combinators cannot reach the peak performance of parser genera-
tors [37], hand-written parsers, or optimized code [6] (see section 5).

Meta-programming approaches such as macros [9] and staging [47] have been applied to Scala parser combinators [39]
with significant performance improvements [6,28]. In general, these approaches remove composition overhead and inter-
mediate representations. Other approaches attack performance problems using more efficient structures, macros etc. (see 
Parboiled 2,1 attoparsec2 or FParsec3).

While Scala optimizations rely on the power of the Scala compiler, and other solutions exploit knowledge about the 
internal implementation, our solution provides optimizations based on the domain knowledge of the parsing formalism, is 
language-agnostic, and does not rely on specifics of the internal implementation.

In this work we build on our idea of a parser compiler [34], which optimizes the parser for a language by using specialized 
parsing strategies for different parser combinators. A strategy is selected based on the language the given parser combinator 
parses. Different subsets of a language are matched to different parsing strategies. Each of these strategies fits the best for 
the given subset. Our approach preserves all the advantages of parser combinators and does not impose any restrictions on 
their expressiveness.

We choose as a case study the performance of PetitParser [46,31] – a parser combinator framework using the parsing 
expression grammar (PEG) formalism [16]. As a validation of the ideas presented in this work, we implement a parser 
combinator compiler (for short, a parser compiler): an ahead of time source-to-source translator. This compiler (i) analyzes 
parser combinators of PetitParser, (ii) chooses the most appropriate parsing strategy for each of them, and (iii) integrates 
these strategies into a single top-down parser, which is equivalent to the original parser. Based on our measurements 
covering six different grammars for PetitParser,4 our parser compiler offers a performance improvement of a factor ranging 
from two to ten, depending on the grammar. Based on our Smalltalk case study, our approach is only 10% slower than a 
highly-optimized, hand-written parser.

To summarize, this paper makes the following contributions: i) a discussion of performance bottlenecks of parser com-
binators, ii) a description of optimization techniques addressing these bottlenecks, and iii) a detailed analysis of their 
effectiveness.

The paper is organized as follows: We explain the parsing overhead of parser combinators using a concrete example 
in section 2. In section 3 we introduce a parser compiler, which reduces the existing overheads of parser combinators. 
In section 4 we describe in detail how we identify and apply different parsing strategies. In section 5 we analyze the per-
formance impact of different parsing strategies. In section 6 we briefly discuss related work and finally, section 7 concludes 
this paper.

2. Motivating example

In this section, we present, as an example, the parsing overhead of PetitParser. PetitParser [46,31] is a parser combinator 
framework [24] that uses packrat parsing [15], scannerless parsing [52], and parsing expression grammars (PEGs) [16].

We identify the most critical performance bottlenecks of PetitParser and explain them using an example with a grammar 
describing a simple programming language as shown in Listing 1 (we use a simplified version of the actual PetitParser DSL 
as described in detail in Table B.2).

A program conforming to this grammar consists of a non-empty sequence of classes. A class starts with classToken , 
followed by an idToken and body . The classToken rule is a ’class’ keyword that must be followed by a space 
that is not consumed. This is achieved by using the and predicate & followed by #space , which expects a space or a 
tabulator. Identifiers start with a letter followed by any number of letters or digits. The class keyword and identifiers are 
transformed into instances of Token , which maintain information about start and end positions and the string value of 
a token. There is a semantic action associated to a class rule that creates an instance of ClassNode filled with an 
identifier value and a class body.

A class body is indentation-sensitive, i.e., indent and dedent determine the scope of a class (instead of commonly 
used brackets e.g., { and } ). The indent and dedent rules determine whether a line is indented, i.e., on a column 
strictly greater than the previous line or dedented, i.e., column strictly smaller than the previous line. The indent and 
dedent rules are represented by specialized action parsers that manipulate an indentation stack by pushing and popping 
the current indentation level, similarly to the scanner of Python.5 The class body contains a sequence of classes and methods.

1 http :/ /www.webcitation .org /6k6195CiS.
2 http :/ /www.webcitation .org /6k61DC2EA.
3 http :/ /www.webcitation .org /6k61HcnHU.
4 Expressions, Smalltalk, Java, Ruby, and Python.
5 http :/ /www.webcitation .org /6k637RJ7V.

http://www.webcitation.org/6k6195CiS
http://www.webcitation.org/6k61DC2EA
http://www.webcitation.org/6k61HcnHU
http://www.webcitation.org/6k637RJ7V


Download English Version:

https://daneshyari.com/en/article/6875197

Download Persian Version:

https://daneshyari.com/article/6875197

Daneshyari.com

https://daneshyari.com/en/article/6875197
https://daneshyari.com/article/6875197
https://daneshyari.com

