
JID:SCICO AID:2146 /FLA [m3G; v1.223; Prn:5/10/2017; 16:43] P.1 (1-23)

Science of Computer Programming ••• (••••) •••–•••

Contents lists available at ScienceDirect

Science of Computer Programming

www.elsevier.com/locate/scico

Lub: A pattern for fine grained behavior adaptation at runtime

Steven Costiou ∗, Mickaël Kerboeuf, Glenn Cavarlé, Alain Plantec

Univ. Bretagne-Occidentale, UMR CNRS 6285, Lab-STICC, F-29200 Brest, France

a r t i c l e i n f o a b s t r a c t

Article history:
Received 14 January 2017
Received in revised form 19 June 2017
Accepted 19 September 2017
Available online xxxx

Keywords:
Unanticipated adaptation
Dynamic behavior
Dynamic lookup
Runtime evolution

Autonomous systems have to evolve in complex environments and their software must 
adapt to various situations. Although it is common to anticipate adaptations at design time, 
it becomes a more complex issue when facing unpredictable contexts at runtime, especially 
if applications cannot be stopped. We introduce Lub, a pattern designed to extend object 
oriented languages with fine grained unanticipated adaptations. Lub is based on dynamic 
instrumentation of the lookup, and allows objects to acquire behaviors from another 
class than their own. A Pharo Smalltalk implementation of Lub is evaluated through a 
performance analysis and a running example of a fleet of drones facing unexpected GPS 
problems. Lub is then discussed from the unanticipated software adaptation perspective.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

The need for dynamic behavior adaptation especially arises in applications that need to run continuously, or embedded 
in autonomous systems like drones or robots. Adaptations may not be easy to predict, for example because of unexpected 
events coming from a complex environment in which the system is running, or more simply because of bugs. Sometimes 
these systems cannot be stopped, or the cost of turning them off for an update or for debugging is too high.

An example could be an autonomous fleet of drones flying on a programmed mission. Their software relies on physical 
sensors, e.g. a GPS, to recover and share the fleet’s position. This behavior is defined at compile time and it is usually not 
designed to be modified at runtime. For instance, if one of the drones loses its ability to process the GPS signal and if it is 
not programmed to operate without it, the whole fleet will be affected and will be unable to fulfill its mission. Debugging 
the system would be a very interesting option as recalling the drones means canceling the mission. First we would like to 
see what is happening in the software. A very basic debug technique is to trace on a log what the system does, if this option 
is available in the running system. If not, this logging behavior has to be defined, added to the running system (without 
interruption) and removed once it is not needed anymore. Second, once we figured out what is wrong we would like to 
adapt the behavior of the software, and try–cancel–retry new adaptations through the debugging process. These kinds of 
changes cannot be anticipated.

Unanticipated software evolution [1] makes possible to dynamically adapt a running software. Applications can be in-
strumented by touching both functional and non-functional behaviors. This opens perspectives in the debugging activity 
to understand what is happening in the application and to experiment behavioral variations before applying a patch. Al-

* Corresponding author.
E-mail addresses: steven.costiou@univ-brest.fr (S. Costiou), mickael.kerboeuf@univ-brest.fr (M. Kerboeuf), glenn.cavarle@univ-brest.fr (G. Cavarlé), 

alain.plantec@univ-brest.fr (A. Plantec).

https://doi.org/10.1016/j.scico.2017.09.006
0167-6423/© 2017 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.scico.2017.09.006
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/scico
mailto:steven.costiou@univ-brest.fr
mailto:mickael.kerboeuf@univ-brest.fr
mailto:glenn.cavarle@univ-brest.fr
mailto:alain.plantec@univ-brest.fr
https://doi.org/10.1016/j.scico.2017.09.006


JID:SCICO AID:2146 /FLA [m3G; v1.223; Prn:5/10/2017; 16:43] P.2 (1-23)

2 S. Costiou et al. / Science of Computer Programming ••• (••••) •••–•••

though there exist adaptive systems, not many of them cope easily with unanticipated adaptation [2]. A key component in 
these systems is the adaptation mechanism, which must provide enough flexibility and precision to address the problems 
of unanticipated behavior adaptation [3].

In this paper, we explore and discuss a pattern named Lub. We use it to build an adaptation mechanism designed to 
answer the needs and constraints of unanticipated behavior adaptation in object-oriented software. With Lub, the developer 
can specify adaptations to extend or modify the protocol of a given object. Adaptations target classes so that any object 
can individually acquire behaviors from another class than its own. Lub is designed to be a pattern, therefore it can be 
implemented in any technology provided the host language has the necessary capabilities discussed in this paper.

The main contributions of this paper are:

• The definition of Lub, an object oriented pattern for unanticipated behavior adaptation. The pattern is described in 
detail, and we specify how it could extend an object-oriented language.

• A performance analysis of a featherlight implementation of Lub with the Pharo language, to analyze its usability in 
terms of execution speed, adaptation time and memory overhead.

• The evaluation of this implementation through the case study of a drone simulation. The evaluation shows how adap-
tations can be specified and how they impact the behavior of the running software.

• The discussion of the Lub pattern with regard to the literature.

The remainder of this paper is organized as follows. In section 2 we describe our motivation for unanticipated adaptation, 
which we illustrate through a simple example with drones. In section 3, we discuss the difficulties of unanticipated dynamic 
adaptation. Section 4 defines the Lub pattern and section 5 briefly describes the current implementation. Section 6 shows a 
performance analysis of Lub and section 7 shows an evaluation of Lub in two use case scenarios. Lub and related works are 
discussed in section 8. Future works are described in section 9 and we conclude this paper in section 10.

2. Motivating example: unanticipated behavior adaptation in a fleet of drones

This section illustrates the need for unanticipated dynamic adaptation through a simple example. Two drones are moving 
together, close to each other. The first one (gps-drone) has an active GPS while the other one (follower-drone) uses a com-
munication channel with gps-drone to recover its own relative position. The shared GPS of gps-drone is used for navigation 
by the fleet.

2.1. The GPS loss scenario

Since the environment is highly dynamic and therefore not entirely known, it is not possible to predict everything that 
could happen during the flight. Our scenario is illustrated in Fig. 1. The fleet enters a secured area where all communications 
must be encrypted. However both drones enter a stand-by mode because follower-drone fails to recover its GPS position from 
the first drone. But gps-drone GPS’ signal is fine and the communication between the two drones seems alright. The context 
change was effective in gps-drone but not in follower-drone, therefore when follower-drone asks gps-drone its GPS position, 
gps-drone answers encrypted data that follower-drone is unable to decipher. The drones are waiting for the situation to be 
solved: this is a predefined behavior. To change this behavior and to enable adaptation for this particular context, a simple 
way is to abort the mission and to update the software offline.

This example may happen in a simulation when designing the software, as the use-case we will show in section 7.2. 
It can also occur in a real mission with autonomous drones. In both cases, restarting the mission can be very expensive: 
a simulation may have run for a long time, autonomous drones may have flight over a great distance. Stopping a simulation 
or recalling the drones each time there is a new context that was not anticipated at design time is a problem. In addition, 
the drones accumulated dynamic states and data until the problem happened: they lived in an unpredictable and complex 
environment. So there are no guarantees one could reproduce the problem in development mode due to the impossibility 
to recreate or simulate the exact context and conditions under which it originally happened. This use-case can be classified 
as a bug and as such it remains unforeseen at design time.

2.2. The unanticipated adaptations

The fleet is stalled because one of the drones failed to adapt to the changing conditions (the entering of the unsecured 
area). We know exactly what happens here, when we describe our use-case in this paper, but it is not obvious that a 
human operator would easily understand the problem when it happens. From his point of view, he is facing an unexpected 
problem with no obvious reason, and a restricted set of options. Either the drones are recalled and their software and data 
analyzed offline, either the operator has to dynamically update their behavior. The software itself cannot adapt, as we made 
the assumption in section 2.1 that this particular case was unforeseen at design time.



Download	English	Version:

https://daneshyari.com/en/article/6875201

Download	Persian	Version:

https://daneshyari.com/article/6875201

Daneshyari.com

https://daneshyari.com/en/article/6875201
https://daneshyari.com/article/6875201
https://daneshyari.com/

