
JID:SCICO AID:2083 /FLA [m3G; v1.214; Prn:20/04/2017; 10:08] P.1 (1-15)

Science of Computer Programming ••• (••••) •••–•••

Contents lists available at ScienceDirect

Science of Computer Programming

www.elsevier.com/locate/scico

A study of mutable checkpointing and related algorithms

Astrid Kiehn a,∗,1, Deepanker Aggarwal b

a Indian Institute of Technology Mandi, India
b University of Wisconsin, Madison, United States

a r t i c l e i n f o a b s t r a c t

Article history:
Received 20 February 2016
Received in revised form 26 March 2017
Accepted 29 March 2017
Available online xxxx

Keywords:
Snapshot
Checkpointing
Consistency
Formal verification
Distributed computing

Mutable Checkpointing algorithms (MC), [7–9], stand for snapshot algorithms that take 
checkpoints of processes with causally induced dependencies to the initiating process, 
only. They classify as coordinated snapshot algorithms with communication induced 
checkpointing. To specify and verify such algorithms formally, we introduce a formal 
framework in which their operational semantics can easily be expressed. Within this 
framework correctness of the algorithms follows from an invariant which explains how 
snapshots are incrementally built up. For MC and the related blocking queue algorithms 
of [26,27] some adaptations are required as they take a partial snapshot, only. However, 
both can be proven in the given framework and in this way we equip them with a direct, 
constructive consistency proof.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

The on-the-fly computation of a snapshot of a distributed computation is a well known technique for system diagnosis 
and maintenance. Many snapshot algorithms have been suggested and analyzed leading to classifications like coordinated 
checkpointing, communication induced checkpointing (CIC) and uncoordinated checkpointing. See [18] for an overview.

New attention has been given to snapshot algorithms with the emerging paradigms of mobile computing and high 
performance computing. They require an economic use of resources in terms of communication overhead, energy, storage, 
and scalability.

Mutable checkpointing, [7–9], addresses these requirements by taking checkpoints of only those processes to which there 
is a causally induced dependency to the initiator. Related are the blocking queue algorithms (BLQ), [26,27,17], which provide 
an alternative solution to the main problem arising from the partial snapshot request. While there are formal models for 
classical algorithms, like I/O automata, Petri nets, process algebras, see [28], MC and the blocking queue algorithms have 
been formulated in terms of pseudo code or verbal explanations, only.

In this paper we set up a general framework for proving correctness of coordinated snapshot algorithms with CIC. 
We start out with the most prominent algorithm in this class, CL/LY, which is a combination of the seminal papers by 
Chandy/Lamport [10] and Lai/Yang [20]. The snapshotting is initiated with checkpoint requests sent to all processes, but a 
checkpoint may also be triggered by the receipt of an application message sent after a checkpoint (the CIC feature). MC and 
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BLQ are other instances of such algorithms with the additional feature that only those processes take a checkpoint on which 
the initiating process directly or indirectly depends on.

Proving correctness of such algorithms amounts to showing consistency of the computed snapshot with the underlying 
distributed computation. We prove consistency by establishing that a global state and its counterpart in which processes 
that have taken a checkpoint are frozen, progress in the same way when non-frozen processes are concerned. This approach 
can be seen as setting up and proving an invariant over the operational semantics of the algorithms, and hence it cannot 
claim novelty. Surprisingly, however, this technique has not been applied to snapshot algorithms earlier. Proofs that can be 
found in the literature are either retrospective and reorder events of the completed checkpoint computation (e.g. [10,20]) 
or are based on contradiction (like for MC). The only two exceptions are the recent work [4] coined as proof by refinement, 
and [17] a variant of the blocking queue algorithm of [26,27]. The advantage of our direct, constructive proof is twofold: 
it gives insight into the intermediate behavior of the algorithm, and further opens up the possibility of a computer aided 
verification (similarly as [4]).

The operational semantics of the algorithms have been extracted from the source papers [9] and [26] where we ab-
stracted (what we consider) the essence of the algorithms by ignoring all details and features not related to the checkpoint 
taking and its propagation. This allowed us to give a concise description of the algorithms and to identify what we call the 
principle dilemma of partial snapshotting: how to react when a message is to be received that requires a prior checkpoint 
in case there is a causally induced dependency between the receiver and the snapshot initiator. As the receiver does not 
need to be aware of an existing dependency it can either take a tentative checkpoint as in MC or buffer the message in a 
queue until clarity has been obtained. The latter is the approach of BLQ.

The characterizing invariant of a snapshot algorithm should explain how the snapshot gradually builds up on course of 
the underlying computation. While the latter is fairly easy to see for algorithms which take checkpoints without discarding 
them later, it is not obvious for MC where discarding tentative checkpoints is a main feature. The solution we suggest is 
based on considering simultaneously all possibilities of tentative checkpoints being converted to (permanent) checkpoints 
later or being discarded. An interesting observation coming out from the analysis is that none of these partially built 
up snapshots needs to be consistent with the underlying computation. In this respect, the blocking queue algorithms are 
well-behaved as any such state is consistent with the underlying computation. However, for partial snapshot algorithms the 
finally computed snapshot is the one with all processes not having taken a checkpoint being reset to their initial states. This 
final snapshot is consistent with the underlying computation for both algorithms, MC and BLQ.

As a side effect of the formal framework, the algorithms may be compared via the transition rules defining the semantics 
of the algorithms. Fixing a distributed computation over which a snapshot is to be determined one gets comparative insight 
into the snapshots computed by CL/LY, MC or BLQ. Though there are limits of this approach, it allows one to establish that 
MC does not compute “earlier” snapshots than blocking queue algorithms as one might expect.

The paper is structured as follows. The next section introduces the system model and basic definitions of distributed 
computations. Section 3 explains the framework and the proof technique for coordinated checkpointing with CIC on the 
basis of CL/LY, the combined algorithm of Chandy and Lamport [10] and Lai and Yang [20]. The principle dilemma of partial 
snapshotting is explained in Section 4, followed by the analysis of MC, Section 5, and of BLQ, Section 6. Section 7 provides 
a comparison, and Section 8 concludes with a discussion of related work and final considerations.

The results presented are based on previous work [2,17], in which, separately, mutable checkpointing and a blocking 
queue algorithm were analyzed. While [2] is subsumed here, [17] analyzes a BLQ algorithm with the additional feature of 
delayed checkpointing (not present in [26,27]). Delayed checkpointing somewhat blurs the orthogonal approaches of MC 
and BLQ, so we abstracted away from it in favor of a clearer exposition.

2. System model and basic definitions

We assume a message passing system with reliable FIFO channels. A distributed computation is performed by a set of 
processes {P1, . . . , Pn} which communicate solely via FIFO channels Cij , i, j ≤ n, i �= j. Channel Cij leads from Pi to P j . 
Channels are assumed not to lose, reorder or duplicate messages. We further assume that all messages will eventually be 
read (removed from the channel).

Messages and events are given with MSG and Events, respectively. For the CL/LY system they are listed in the following 
table.

cp_taken1 Pi takes a checkpoint
sendij(.) Pi adds a message to channel Cij
rcvi j(.) P j receives a message from channel Cij

cpr1 a checkpoint request message of P1
〈msg, fb〉 a message and attached flagbit

For systems without snapshotting, messages would come without attached flagbits.
With MSG∗ and Events∗ we consider their free monoids. We use the simple dot to separate letters in a word. For the 

concatenation of words we use ◦ to ease readability. We apply common string operations like replacing in a string w all 
occurrences of letter a by b, denoted w[a/b], erasing all occurrences of a in w , w[a/ε], or reversing w to rev(w). More 



Download English Version:

https://daneshyari.com/en/article/6875210

Download Persian Version:

https://daneshyari.com/article/6875210

Daneshyari.com

https://daneshyari.com/en/article/6875210
https://daneshyari.com/article/6875210
https://daneshyari.com

