
Accepted Manuscript

Variability abstractions for lifted analyses

Aleksandar S. Dimovski, Claus Brabrand, Andrzej Wasowski

PII: S0167-6423(18)30058-3
DOI: https://doi.org/10.1016/j.scico.2017.12.012
Reference: SCICO 2192

To appear in: Science of Computer Programming

Received date: 16 December 2016
Revised date: 28 October 2017
Accepted date: 8 December 2017

Please cite this article in press as: A.S. Dimovski et al., Variability abstractions for lifted analyses, Sci. Comput. Program. (2018),
https://doi.org/10.1016/j.scico.2017.12.012

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing
this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is
published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all
legal disclaimers that apply to the journal pertain.

https://doi.org/10.1016/j.scico.2017.12.012


Variability abstractions for lifted analyses�

Aleksandar S. Dimovskia,b,∗, Claus Brabrandb, Andrzej Wasowskib

aMother Teresa University, 12 Udarna Brigada 2a, 1000 Skopje, Makedonija
bIT University of Copenhagen, Rued Langgaards Vej 7, 2300 Copenhagen, Denmark

Abstract

Family-based (lifted) static analysis for “highly configurable programs” (program
families) is capable of analyzing all variants at once without generating any of
them explicitly. It takes as input only the common code base, which encodes all
variants of a program family, and produces precise analysis results corresponding
to all variants. However, the computational cost of the lifted analysis still depends
inherently on the number of variants, which is in the worst case exponential
in the number of statically configurable options (features). For a large number
of features, the lifted analysis may be too costly or even infeasible. In this
work, we introduce variability abstractions defined as Galois connections, which
simplify variability away from program families based on #ifdef-s. Then, we use
abstract interpretation as a formal method for the calculational-based derivation
of abstracted lifted analyses, which are sound by construction.

Our approach for abstracting lifted analysis is orthogonal to the particular
program analysis chosen as a client. While a single program analysis operates on
program states and depends on language-specific constructs, the lifted analysis
assumes that a single program analysis already exists and lifts its results to all
variants of the analyzed program family. Variability abstractions aim to reduce
this variability-specific component of the lifted analysis, which handles variability
and #ifdef-s. Furthermore, given the “orthogonality” of variability abstractions
to the rest of the analysis (its language-specific component), we can implement
abstractions as a preprocessor. In particular, given an abstraction we define a
syntactic transformation, which translates any program family into an abstracted
version of it, such that the analysis of the abstracted program family coincides
with the corresponding abstracted analysis of the original program family. We
have implemented the proposed approach, and we evaluate its practicality on
three Java benchmarks. The evaluation shows that abstractions yield significant
performance gains, especially for families with higher variability.

Keywords: Program Families, Static Analysis, Abstract Interpretation

�Partially supported by The Danish Council for Independent Research under a Sapere Aude
project, VARIETE.

∗Corresponding author

Preprint submitted to Journal of Science of Computer Programming March 6, 2018



Download	English	Version:

https://daneshyari.com/en/article/6875216

Download	Persian	Version:

https://daneshyari.com/article/6875216

Daneshyari.com

https://daneshyari.com/en/article/6875216
https://daneshyari.com/article/6875216
https://daneshyari.com/

