
JID:SCICO AID:2126 /FLA [m3G; v1.221; Prn:29/08/2017; 11:13] P.1 (1-17)

Science of Computer Programming ••• (••••) •••–•••

Contents lists available at ScienceDirect

Science of Computer Programming

www.elsevier.com/locate/scico

A machine-checked correctness proof for Pastry

Noran Azmy a,b, Stephan Merz b,∗, Christoph Weidenbach a

a Max Planck Institute for Informatics, Saarbrücken, Germany
b University of Lorraine, CNRS, Inria, LORIA, Nancy, France

a r t i c l e i n f o a b s t r a c t

Article history:
Received 7 October 2016
Received in revised form 10 August 2017
Accepted 11 August 2017
Available online xxxx

Keywords:
Formal verification
Machine-checked proof
Distributed algorithm
Peer-to-peer protocol
Distributed hash table

Protocols implemented on overlay networks in a peer-to-peer (P2P) setting promise 
flexibility, performance, and scalability due to the possibility for nodes to join and 
leave the network while the protocol is running. These protocols must ensure that all 
nodes maintain a consistent view of the network, in the absence of centralized control, 
so that requests can be routed to the intended destination. This aspect represents an 
interesting target for formal verification. In previous work, Lu studied the Pastry algorithm 
for implementing a distributed hash table (DHT) over a P2P network and identified 
problems in published versions of the algorithm. He suggested a variant of the algorithm, 
together with a machine-checked proof in the TLA+ Proof System (tlaps), assuming the 
absence of node failures. We identify and correct problems in Lu’s proof that are due to 
unchecked assumptions concerning modulus arithmetic and underlying data structures. We 
introduce higher-level abstractions into the specifications and proofs that are intended for 
improving the degree of automation achieved by the proof backends. These abstractions 
are instrumental for presenting the first complete formal proof. Finally, we formally prove 
that an even simpler version of Lu’s algorithm, in which the final phase of the join protocol 
is omitted, is still correct, again assuming that nodes do not fail.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

In a peer-to-peer (P2P) network, individual nodes, or peers, communicate directly with each other and act as both sup-
pliers and users of a given service. P2P networks are motivated by their self-organization, scalability and robustness, since 
there is no central server representing a single point of failure or a performance bottleneck.

A key problem with P2P networks—particularly large-scale ones—is how to efficiently manage the available resources. In 
completely unstructured P2P networks where no topology is imposed on the nodes, functions like search typically resort 
to flooding the network via broadcasting a search request until the request reaches a peer that has the required data item. 
Flooding causes a very high amount of unnecessary network traffic, as well as CPU and memory usage [1].

Distributed hash tables (DHTs) are a way of structuring P2P networks so that the available resources are organized, and 
communication among peers is reliable and efficient. A DHT implements a hash table where key-value pairs are stored at 
different nodes on the network. Nodes are assigned unique identifiers, and messages from one node to another—instead 
of being flooded through the network—are routed through a number of intermediate nodes, the route being determined 
by node identifiers. Distributed hash tables tap the advantages of both P2P communication and hash tables, with a simple 

* Corresponding author.
E-mail address: stephan.merz@loria.fr (S. Merz).

http://dx.doi.org/10.1016/j.scico.2017.08.003
0167-6423/© 2017 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.scico.2017.08.003
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/scico
mailto:stephan.merz@loria.fr
http://dx.doi.org/10.1016/j.scico.2017.08.003


JID:SCICO AID:2126 /FLA [m3G; v1.221; Prn:29/08/2017; 11:13] P.2 (1-17)

2 N. Azmy et al. / Science of Computer Programming ••• (••••) •••–•••

and elegant design that enables locating a required piece of data with high efficiency, and without the need for global 
information. As in a classic hash table, the main function of a DHT is key lookup. Due to the lack of a central server 
with a global view of the network, nodes in a DHT must collaborate to decide on their respective key storage range, and 
to route lookup requests to the appropriate node. Pastry, Chord, Kademlia, CAN and DKS are among the most popular 
published DHT protocols [2–6]. These protocols are similar in that they focus on the efficient management of data stored 
in a distributed fashion over a large number of nodes, but they differ in some characteristics such as the topology of the 
overlay network, the distance function between nodes on the network, and the routing model.

In most practical applications, P2P/DHT networks are subject to a certain level of churn; nodes are continuously joining 
and leaving the network, and they may fail abruptly without giving notice to other nodes. The DHT implementation should 
handle this turbulence efficiently and smoothly and ensure that the network always recovers to a stable state where con-
nectivity among the live nodes is maintained and there is no confusion among the nodes about the key space. This aspect 
presents an interesting target for formal verification.

In this paper, we present the results of our formal verification of Pastry. We verify correct delivery of lookups for two 
variants of Pastry by giving two complete proofs of correctness written in the interactive proof assistant tlaps [7]. It has 
already been shown in [8] that published variants of the protocol violate this correctness property: not only may node 
departures and failures may cause the network to separate irreversibly, but more surprisingly, the Pastry ring may even 
disorganize when new nodes join the network. Here, we show that a version of Pastry suggested by Lu [9] is correct with 
respect to delivery of lookup messages in a pure-join model, i.e., where no nodes may leave the network or fail. We also 
show that in the pure-join model, correctness still holds using a join protocol that is simpler than that used by Lu and 
originally proposed in [10].

1.1. Related work

Bakhshi et al. [11] describe an abstract model for structured P2P networks with a ring topology in the π -calculus, and 
use this model for verifying the stabilization algorithm of Chord by establishing weak bisimulation between the specification 
of Chord as a ring network and the implementation of the stabilization algorithm. This is a pure-join model in which node 
failure is not taken into account, and features such as finger (routing) tables and node successor lists are not modeled. 
Using Alloy to formally model and verify Chord, Zave [12] shows that the pure-join Chord protocol is correct, but that 
the full version of the protocol may not maintain the claimed invariants. In subsequent work [13] she presents a full 
version of Chord (where both node arrivals and departures are modeled) with a partly mechanized proof of correctness. 
The correctness of this version of Chord relies on the assumption that there is a stable base of r + 1 permanent network 
members, where r is the size of the successor list maintained by each node. The authors of the protocol DKS conduct 
some experiments using simulation to observe how lookup efficiency is affected by churn [6]. In his Ph.D. thesis, Ghodsi [14]
discusses several issues such as concurrent joins and node failure, and claims that it is impossible to guarantee correctness 
when node failure is possible, due to the possibility of network separation. Borgström et al. [15] use CCS for the formal 
verification of lookups in the static case of the protocol, i.e., without taking node joins or failure into account.

The work that is most relevant to this paper was done by Lu on Pastry [8,9,16]. Lu models Pastry in TLA+, and uses the
tlc model checker and the tlaps proof assistant to formally verify correct delivery of lookups: at any point in time, there is 
at most one node that answers a lookup request for a key, and this node must be the closest live node to that key. As in the case of 
Chord, Lu discovers several problems in the original Pastry protocol. He also shows that the improvements proposed in later 
publications on Pastry, in particular by Haeberlen et al. [10], still do not guarantee correct delivery, even in the absence 
of node failures. Finally, he presents a pure-join variant of Pastry, which he calls LuPastry, for which he verifies correct 
delivery. Notably, Lu’s Pastry variant restricts the protocol described in [10] by enforcing that a live node may only facilitate 
the joining of one newly arriving node at a time. Lu’s proof reduces correct delivery to a set of around 50 claimed invariants, 
which are proved with the help of tlaps. As such, LuPastry represents a major effort in the area of computer-aided formal 
verification of distributed algorithms. Due to the sheer size of the proof, however, as well as the lack of maturity of the tools 
at the time, Lu’s proof relies on many unproved assumptions relating to arithmetic and to protocol-specific data structures. 
Upon examining Lu’s proof, we discovered counterexamples to several of the underlying assumptions. While we were able to 
prove weaker variants of many assumptions, this was not possible for others. In fact, we were able to find a counterexample 
to one of Lu’s claimed invariants, for which the TLA+ proof was only possible because of incorrect assumptions. This led 
us to redesign the overall proof of correctness for Pastry. In the process, we introduced higher-level abstractions in the 
specification and the proof that help make the TLA+ specification of the protocol more understandable and, importantly, 
also help improve the degree of automation of the proof.

Our improved specifications and the outline of the new proof were published in [17], and the present article is an 
extended version of that conference paper that contains a more detailed presentation of our contributions. Moreover, we 
observe that the node join process of the protocol can be simplified substantially, without impacting correctness: the in-
variants used for the proof reveal that the final “lease exchange” step, a handshaking step between a new node and its 
neighbor nodes before it becomes an active participant, is not necessary for correctness in the join-only scenario. In fact, 
this step was not part of the original Pastry protocol published in [2], but was introduced by Haeberlen et al. [10], among 
other improvements to the protocol. Although the reasons for adding the lease exchange step are not stated explicitly, one 
may suspect that it was introduced in order to improve the accuracy of the leaf sets and, consequently, the consistency of 



Download English Version:

https://daneshyari.com/en/article/6875230

Download Persian Version:

https://daneshyari.com/article/6875230

Daneshyari.com

https://daneshyari.com/en/article/6875230
https://daneshyari.com/article/6875230
https://daneshyari.com

