
Science of Computer Programming 156 (2018) 68–89

Contents lists available at ScienceDirect

Science of Computer Programming

www.elsevier.com/locate/scico

The two paradigms of software development research

Paul Ralph a,b,∗
a University of Auckland, New Zealand
b University of British Columbia, Canada

a r t i c l e i n f o a b s t r a c t

Article history:
Received 11 April 2017
Received in revised form 30 November 2017
Accepted 9 January 2018
Available online 11 January 2018

Keywords:
Empiricism
Rationalism
Philosophy of science
Software design
Empirical software engineering

The most profound conflict in software engineering is not between positivist and interpre-
tivist research approaches or Agile and Heavyweight software development methods, but 
between the Rational and Empirical Design Paradigms. The Rational and Empirical Paradigms 
are disparate constellations of beliefs about how software is and should be created. The 
Rational Paradigm remains dominant in software engineering research, standards and cur-
ricula despite being contradicted by decades of empirical research. The Rational Paradigm 
views analysis, design and programming as separate activities despite empirical research 
showing that they are simultaneous and inextricably interconnected. The Rational Paradigm 
views developers as executing plans despite empirical research showing that plans are a 
weak resource for informing situated action. The Rational Paradigm views success in terms 
of the Project Triangle (scope, time, cost and quality) despite empirical researching show-
ing that the Project Triangle omits critical dimensions of success. The Rational Paradigm 
assumes that analysts elicit requirements despite empirical research showing that analysts 
and stakeholders co-construct preferences. The Rational Paradigm views professionals as 
using software development methods despite empirical research showing that methods 
are rarely used, very rarely used as intended, and typically weak resources for informing 
situated action. This article therefore elucidates the Empirical Design Paradigm, an alterna-
tive view of software development more consistent with empirical evidence. Embracing the 
Empirical Paradigm is crucial for retaining scientific legitimacy, solving numerous practical 
problems and improving software engineering education.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

What can be asserted without evidence, can be dismissed without evidence.
–Hitchens’ Razor

The interdisciplinary academic discourse on design is bifurcated into two, possibly incommensurable paradigms [1–3], 
here called The Rational Design Paradigm and The Empirical Design Paradigm. Consider the conflicting descriptions of software 
development shown in Box 1.

* Correspondence to: Department of Computer Science, University of Auckland, Auckland, New Zealand.
E-mail address: paul@paulralph.name.

https://doi.org/10.1016/j.scico.2018.01.002
0167-6423/© 2018 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.scico.2018.01.002
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/scico
mailto:paul@paulralph.name
https://doi.org/10.1016/j.scico.2018.01.002
http://crossmark.crossref.org/dialog/?doi=10.1016/j.scico.2018.01.002&domain=pdf


P. Ralph / Science of Computer Programming 156 (2018) 68–89 69

Box 1
Illustrative metanarratives of the two paradigms.

The rational design paradigm metanarrative The empirical design paradigm metanarrative

The problem is known and the goal of the system is clear. Analysts 
elicit comprehensive, unambiguous requirements which are agreed by 
the client. Designers search a conceptual solution space for design 
candidates that satisfy the requirements. They use logic and reason to 
deduce an appropriate architecture or user interface. Design decisions 
are concentrated in this phase of the project. Developers select an 
appropriate software development method and use it to build the 
system. Although perfect rationality is impossible, developers strive to 
be as structured, methodical and rational as they can. They plan 
development as a series of activities or phases with milestones and 
execute this plan. Unexpected events trigger re-planning. Teams 
understand and evaluate their progress in terms of the plan. The 
project is successful if it delivers the agreed scope within the allotted 
time and budget, at a reasonable quality. Researchers understand this 
process in terms of lifecycle models and software development 
methods.

There is no “the problem.” There is a situation that different 
stakeholders (with different goals) perceive as problematic in different 
ways. Analysts work with stakeholders to collaboratively construct 
ideas and preferences for a possible system. It is not clear which of 
these ideas and preferences are requirements because no one knows 
for sure whether each feature is critical, optional, or 
counterproductive. Understanding of the problematic situation and 
possible design candidates coevolve: ideas about solutions trigger 
problem reframing, which triggers new solution ideas, and so on. 
Designers rely on creativity and intuition. Design pervades the project, 
with key properties emerging from users, designers and developers 
during interviews, analysis, programming, refactoring, etc. Each project 
presents unique sequences of events, which do not necessarily 
resemble known methods or process models. Unexpected events are 
common. Plans and software development methods and consequently 
weak resources for informing behavior, so people improvise. Project 
success is complicated and controversial but making the problematic 
situation better in the eyes of its stakeholders generally outweighs 
technical performance and satisfying contracts. Researchers 
understand this process in terms of teleological and dialectical process 
theories, as well as professional behavior.

Some software engineering (SE) researchers and professionals identify more with the story on the left, while others 
identify more with the story on the right. This creates enormous confusion and conflict in the SE community. Clever, 
well-informed people disagree because they are using different terms, or using the same terms to mean different things. 
This paper therefore attempts to unravel, define, explain and examine the two paradigms, and thereby ameliorate ongoing 
confusion and conflict.

Here, paradigm is used in the Kuhnian sense of the “constellation of beliefs, values, techniques, and so on shared by the 
members of a given community” [4]. Paradigms are not methods; they are not typically used by practitioners directly.

Brooks [5] identified three “formulations” of the Rational Design Paradigm:

1. the mechanical-engineering view of design as a methodical, orderly process, as described by Pahl and Beitz [6];
2. the artificial-intelligence view of design as a search for satisfactory alternatives given goals and constraints, by a designer 

exhibiting “procedural rationality”, as formulated by Simon [7];
3. the managerial view of design as a sequence of weakly-coupled phases, i.e., the Waterfall Model [8] – but more the 

straw man Royce critiqued than the more iterative model he proposed.

Similarly, at least three formulations of the Empirical Design Paradigm are evident:

1. the view of designer as a “reflective practitioner” alternating between problem framing, adjusting a design concept and 
evaluating the adjustment’s consequences [9];

2. the view of the designer as a creative agent whose attention oscillates between an ill-defined problem concept and a 
tentative solution concept (coevolution), gradually developing an understanding of both [10–12];

3. the view of design as a political process characterized by interpersonal conflicts, disagreement over goals, politicking 
and the supremacy of emotional considerations over efficiency (cf. [13–15]).

The conflict between these two paradigms has received little attention in the SE literature, perhaps because it is obscured 
by: 1) disputes between Agile and Heavyweight (also known as traditional or plan-driven) software development methods 
[16]; and 2) disputes between positivist and interpretivist epistemological approaches [17]. The Rational/Empirical conflict is 
more foundational than either of these. The Agile/Heavyweight conflict concerns which methods to use; the Rational/Empir-
ical conflict concerns whether methods are used or useful. The Positivist/Interpretivist conflict concerns how to gather and 
analyze empirical evidence; the Rational/Empirical conflict concerns whether to gather and analyze empirical evidence.

While many have contributed to clarifying the two paradigms (e.g. [1–3,5,9]), their exact compositions and underlying 
philosophical assumptions remain ambiguous. Moreover, the interpretation and implications of the two paradigms for SE 
contexts is not well understood. This raises the following research question.

Research Questions: What are the Rational and Empirical Design Paradigms, their epistemological assumptions and implications 
for software development?

Here, design refers to specifying the properties of an object by creating a model, prototype or the object itself [18]. 
Design “encompasses all the activities involved in conceptualizing, framing, implementing, commissioning, and ultimately 



Download English Version:

https://daneshyari.com/en/article/6875259

Download Persian Version:

https://daneshyari.com/article/6875259

Daneshyari.com

https://daneshyari.com/en/article/6875259
https://daneshyari.com/article/6875259
https://daneshyari.com

