
Science of Computer Programming 156 (2018) 104–120

Contents lists available at ScienceDirect

Science of Computer Programming

www.elsevier.com/locate/scico

Method safety mechanism for asynchronous layer deactivation

Tetsuo Kamina a,∗, Tomoyuki Aotani b, Hidehiko Masuhara b, Atsushi Igarashi c

a Ritsumeikan University, Japan
b Tokyo Institute of Technology, Japan
c Kyoto University, Japan

a r t i c l e i n f o a b s t r a c t

Article history:
Received 17 February 2016
Received in revised form 15 January 2018
Accepted 21 January 2018
Available online xxxx

Keywords:
Context-oriented programming
Layer-introduced base method
ContextFJ
ServalCJ

Context-oriented programming (COP) enhances the modularity of context-dependent 
behavior in context-aware systems, as it provides modules to implement context-
dependent behavior (layers) and composes them dynamically in a disciplined manner 
(layer activation). We propose a COP language that enables layers to define base methods, 
while the layers can be asynchronously activated and deactivated. Base methods in layers 
enhance modularity because they extend the interface of classes without modifying 
original class definitions. However, calling such a method defined in a layer is problematic 
as the layer may be inactive when the method is called. We address this problem by 
introducing a method lookup mechanism that uses the static scope of method invocation 
for COP; i.e., in addition to currently activated layers, the layer where the method 
invocation is written, as well as the layers on which that layer depends, are searched 
during method lookup. We formalize this mechanism as a small calculus referred to as 
ContextFJa and prove its type soundness. We implement this mechanism in ServalCJ, a COP 
language that supports asynchronous, as well as synchronous, layer activation.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

For several years, context awareness has been a major concern in multiple application areas, and its importance is in-
creasing. For example, with progress in sensor technologies, computing platforms have become more aware of physical 
environment, and user interfaces have become more adaptable to users’ current operations. These interactions with the en-
vironment require the ability to change behavior with respect to context, such as a specific state of the physical environment 
or a user’s current task. Such dynamic changes in behavior result in complicated system structures and behaviors that are 
difficult to predict using traditional programming abstractions. To address this difficulty, several context-oriented program-
ming (COP) languages, which have successfully modularized such context-dependent behavior, have been developed [1–9].

COP languages provide language constructs that modularize the variations in behavior that depend on context using 
layers1 and dynamically activate/deactivate them according to the executing contexts [2,1]. A layer defines partial methods, 
which run before, after, or around a call of a method with the same signature defined in a class, only when the layer is 
active. These constructs make COP advantageous in terms of modularity, because partial methods can change the original be-

* Corresponding author.
E-mail addresses: kamina@acm.org (T. Kamina), aotani@c.titech.ac.jp (T. Aotani), masuhara@acm.org (H. Masuhara), igarashi@kuis.kyoto-u.ac.jp

(A. Igarashi).
1 In this study, we focus on layer-based COP languages.

https://doi.org/10.1016/j.scico.2018.01.006
0167-6423/© 2018 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.scico.2018.01.006
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/scico
mailto:kamina@acm.org
mailto:aotani@c.titech.ac.jp
mailto:masuhara@acm.org
mailto:igarashi@kuis.kyoto-u.ac.jp
https://doi.org/10.1016/j.scico.2018.01.006
http://crossmark.crossref.org/dialog/?doi=10.1016/j.scico.2018.01.006&domain=pdf


T. Kamina et al. / Science of Computer Programming 156 (2018) 104–120 105

havior by activating layers without changing the base classes, and ensure consistency in dynamic changes using scoping [2]
or model checking [5].

Even though several COP languages support only partial methods, layer-introduced base methods, i.e., methods in a layer 
that introduce a new signature and do not override other methods, are also known to be useful in COP [10]. Layer-introduced 
base methods considerably enhance modularity because they extend the interface of classes dynamically, which makes en-
suring type-soundness in COP languages more challenging. Formal calculi have been proposed to support such an extension, 
e.g., (1) requiring a subordinate layer (a layer that provides base methods) to be activated while the dominant layer (a layer 
that uses these methods) is executing [10,11], and (2) activating the subordinate layer on-demand when the dominant layer 
is executing [12].2

However, there is an issue in combining these approaches with asynchronous layer activation [13,6,14,5,8] in a type-
safe manner. Asynchronicity is crucial to application domains where contexts change outside of a program, for example, 
ubiquitous computing applications and adaptive user interface. The method lookup in existing COP semantics searches all 
activated layers and the class of a method receiver to dispatch a called method. This semantics does not lead to a problem 
when layers are activated using with-blocks, where the corresponding layer activation is synchronous with the currently 
executing block. However, it leads to a problem in asynchronous layer activation, where layers are activated and deactivated 
by external events such as changes in external environment and user operations. These events may occur at any program 
execution point. Thus, it is possible that the layer that provides a base method to a currently executing method is eventually 
deactivated, resulting in a method-not-understood error.

In this paper, we propose another method lookup mechanism for type-safe layer deactivation.3 In this mechanism, meth-
ods are searched in the layer where method invocation is placed and in the layers on which this layer depends, as well as in 
currently activated layers. This inclusion of the “static scope” for method lookup addresses the abovementioned problem 
of method safety. In other words, the proposed approach supports layer deactivation in the “best effort” manner; that is, 
the deactivation of layers is ensured to the maximum extent, while the deactivation can be canceled when the layers that 
require these layers are activated. This approach is a natural extension of loyal strategy [16], which most COP languages 
adopt, in that the execution of the required behavior is ensured during the execution of the partial method in the requiring 
layer.

This approach is applicable when layer deactivation is not a hard requirement. However, it leads to a problem in other 
cases. For example, we may consider a layer that performs a computation with highly precise results, thereby consuming 
considerable CPU power. Deactivation of this layer is a hard requirement when a battery is approaching exhaustion because 
a computation that consumes considerable CPU power should not be performed in this case. However, a layer that is not 
deactivated may require this high precision layer; thus, it cancels the deactivation.

To resolve this problem, we also introduce an additional mechanism that ensures deactivation of specified layers, i.e., 
a modifier, ensureDeactivate, for layer declarations, which indicates that the deactivation of the declared layer cannot 
be canceled. To ensure that the methods in layers, which are declared with ensureDeactivate, are not called acciden-
tally by other layers that require those layers, layers cannot require the layers declared with ensureDeactivate.

We formalize this idea as a small COP calculus referred to as ContextFJa , and show that this calculus ensures deactivation 
of layers with ensureDeactivate and is type sound. This calculus is an extension of ContextFJ [10] and notably simple, 
even though it is sufficiently expressive to represent asynchronous layer activation and layer-introduced base methods.

The proposed mechanism is implemented in ServalCJ, a COP language with a generalized layer activation mechanism [17]. 
ServalCJ supports asynchronous as well as synchronous layer activation, and per-instance as well as global layer activa-
tion. Originally, ServalCJ did not support layer-introduced base methods. As the proposed mechanism ensures the safety of 
method with asynchronous layer activation, we safely realize layer-introduced base methods in a generalized layer activation 
mechanism.

The rest of this paper is structured as follows. In Section 2, an overview of COP mechanisms, such as layers, layer 
activation, and layer-introduced base methods, is provided. In this section, the problem that is addressed in this paper is 
also identified. In Section 3, we illustrate the proposed method lookup and formalize it as a small calculus, ContextFJa . In 
Section 4, we discuss the problem of layer deactivation cancellation and the proposed solution. In Section 5, we describe 
the type system of ContextFJa and prove its type soundness. In Section 6, the implementation of the proposed mechanism 
is described. In Section 7, related work is discussed. Lastly, conclusions are stated in Section 8.

2. Layers, layer-introduced base methods, and their problem

We demonstrate a motivating example of an adaptive user interface, which comprises a text editor program that was 
inspired by the program editor example proposed by Appeltauer et al. [18]. Our example includes class Editor (and other 
classes) to represent an editor view for the user. This user interface provides a menubar (and other widgets), which is 
displayed by calling showMenuBar when the display is refreshed, as shown below.

2 To be precise, there is a flaw in the proof of type soundness for on-demand activation [12]. To ensure type soundness, we need to modify the reduction 
of method invocation to enclose the entire method execution within the activation of all required layers.

3 This paper is an extended version of our previous work [15]. The main differences from the previous work are the ensureDeactivate mechanism, 
a complete set of computation rules and a type system, and the proof of type soundness.



Download	English	Version:

https://daneshyari.com/en/article/6875263

Download	Persian	Version:

https://daneshyari.com/article/6875263

Daneshyari.com

https://daneshyari.com/en/article/6875263
https://daneshyari.com/article/6875263
https://daneshyari.com/

