
JID:SCICO AID:2138 /FLA [m3G; v1.221; Prn:14/09/2017; 8:44] P.1 (1-19)

Science of Computer Programming ••• (••••) •••–•••

Contents lists available at ScienceDirect

Science of Computer Programming

www.elsevier.com/locate/scico

Periodic scheduling for MARTE/CCSL: Theory and practice

Min Zhang a,b, Feng Dai a,b, Frédéric Mallet b,c,d,∗
a Shanghai Key Laboratory of Trustworthy Computing, ECNU, Shanghai, China
b MoE International Joint Lab of Trustworthy Software, ECNU, Shanghai, China
c Université Cote d’Azur, CNRS, I3S, France
d INRIA Sophia Antipolis Méditerranée, France

a r t i c l e i n f o a b s t r a c t

Article history:
Received 1 May 2016
Received in revised form 7 July 2017
Accepted 25 August 2017
Available online xxxx

Keywords:
Periodic scheduling
MARTE/CCSL
Maude
Rewriting logic
Model checking

The UML profile for Modeling and Analysis of Real-Time and Embedded systems (MARTE) 
is used to design and analyze real-time and embedded systems. The Clock Constraint 
Specification Language (ccsl) is a companion language for MARTE. It introduces logical 
clocks as first class citizens as a way to formally specify the expected behavior of models, 
thus allowing formal verification. ccsl describes the expected infinite behaviors of reactive 
embedded systems. In this paper we introduce and focus on the notion of periodic 
schedule to allow for a nice finite abstraction of these infinite behaviors. After studying the 
theoretical properties of those schedules we give a practical way to deal with them based 
on the executable operational semantics of ccsl in rewriting logic with Maude. We also 
propose an algorithm to find automatically periodic schedulers with the proposed sufficient 
condition, and to perform formal analysis of ccsl constraints by means of customized 
simulation and bounded LTL model checking.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Lamport’s logical clocks [10] originated from the need to synchronize distributed systems without assuming a reliable 
single common timing mechanism to compare events. Indeed, maintaining a global clock in a widely distributed system 
may be very costly. Rather than maintaining a total order on events, a partial view was proposed as sufficient to maintain 
causal relationships.

In a very different community, synchronous languages [3,2,21] use the word clock to emphasize a multiform notion of 
time where the notion of physical time is initially relaxed with the notion of ordering. The main important difference is that 
synchronous languages accept instantaneous causal relations, which are an important abstraction in synchronous circuits but 
are less relevant in widely distributed environments.

The Clock Constraint Specification Language (ccsl) [1,13] proposes a concrete syntax to handle logical clocks as first-class 
citizens. While synchronous languages mainly focus on signals and values and use logical clocks as a controlling mechanism,
ccsl discards the values and only focuses on clock-related issues. In this paper, we focus on the periodic scheduling of
ccsl from both theoretical and practical perspectives, considering that reactive embedded systems have recurrent behaviors 
for which the design of correct periodic schedulers is very important in the development of such systems [12,6]. While 
deciding on the existence of a schedule for a given set of ccsl constraints is still an open problem, we discuss here a 

* Corresponding author at: MoE International Joint Lab of Trustworthy Software, ECNU, Shanghai, China.
E-mail addresses: zhangmin@sei.ecnu.edu.cn (M. Zhang), fdai_itlogic@163.com (F. Dai), Frederic.Mallet@unice.fr (F. Mallet).

http://dx.doi.org/10.1016/j.scico.2017.08.015
0167-6423/© 2017 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.scico.2017.08.015
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/scico
mailto:zhangmin@sei.ecnu.edu.cn
mailto:fdai_itlogic@163.com
mailto:Frederic.Mallet@unice.fr
http://dx.doi.org/10.1016/j.scico.2017.08.015


JID:SCICO AID:2138 /FLA [m3G; v1.221; Prn:14/09/2017; 8:44] P.2 (1-19)

2 M. Zhang et al. / Science of Computer Programming ••• (••••) •••–•••

sufficient condition for having a class of bounded schedules which can be extended to infinite but periodic ones. In our 
earlier work [26], we considered a pragmatic point of view and a very restrictive condition for the existence of periodic 
schedules. We propose here a much less restrictive condition, that (1) allows to find more periodic schedules, (2) is less 
restrictive on the condition to find a periodic schedule, and (3) considers a bigger subset of ccsl constraints. About (3), we 
consider specifically the periodic filter of ccsl, which offers a generic notion of periodicity on logical clocks that generalizes 
the classical definition of periodic activation. In this paper, we prove the correctness of our condition and present an 
operational method for building periodic schedules from a bounded schedule that satisfies the condition.

Furthermore, we also give a formal executable operational semantics of the extended ccsl language using Maude [4], an 
algebraic language based on rewriting logic. The formal operational semantics of ccsl was initially defined in a research re-
port [1] in a bid to provide a reference semantics for building simulation tools, like TimeSquare [7]. Maude provides various 
formal analysis approaches, such as simulation, state space exploration (exhaustive or bounded, symbolic or explicit-state), 
by which we can analyze ccsl specifications to, for instance, check the existence of desired schedules with specific proper-
ties (e.g., reduce memory usage), produce a schedule or simulation by applying customized scheduling policies, and verify 
the satisfiability of expected properties.

The benefits of the new semantics defined in rewriting logic are multifold. The first benefit is that rewriting logic gives 
a direct implementation of the operational semantics while TimeSquare provides a Java-based implementation which is 
prone to introduce unexpected complexity. The second and most important benefit is that we can directly use the tools 
that are provided for rewriting logic to analyze a ccsl specification by means of simulation, state-space exploration, and 
even linear temporal logic model checking. Previous work on studying ccsl properties [14] relies on several intermediate 
transformations to automata and other specific formats so that model-checking becomes possible when a ccsl specification 
is finite. A ccsl specification is called finite if it can be transformed into a finite-state automaton [15]. However, some ccsl

operators, which are called unsafe operators, cannot be transformed into finite-state automata. It either meant reducing to 
a safe subset of ccsl [9] or detecting that the specification was describing a finite reachable state-space even though relying 
on unsafe operators. In this contribution, we rely on the Maude environment [4] to provide a direct analysis support to
ccsl specifications by formally defining its operational semantics in Maude, and we can explore unsafe specifications using 
bounded model checking and do not restrict to the safe subset.

For periodic scheduling, we provide a prototype implementation in Maude based on the new formal semantics of ccsl

to detect the proposed conditions and build the satisfying schedule. As another contribution, we propose five arbitration 
policies to reduce the set of possible solutions when a ccsl specification is under-specified. Such arbitration policies can be 
seen as optimization criteria akin to those classically used in real-time scheduling to optimize memory or bandwidth. Those 
arbitration policies can also be naturally implemented in Maude based on the new formal semantics.

This paper is an extended version of our previous work [26]. Apart from adding much more detail on the formal seman-
tics of ccsl, this extended version adds the following contributions:

1. We consider an operator for the ccsl language that was ignored in previous work, the so-called periodic filter, which 
serves for the specification of logical repetitive patterns between logical clocks.

2. We propose a less constraining sufficient condition for the existence of periodic schedules and give a formal proof of 
its correctness.

3. We present a formal executable operational semantics of the extended ccsl language in Maude and illustrate its appli-
cations to various formal analysis tasks, such as checking the existence of bounded and periodic schedules, deriving a 
customized simulation and performing LTL model-checking.

4. More user-defined arbitration policies are supported for customized simulations of schedules.

The rest of this paper is organized as follows. Section 2 introduces ccsl and the notion of schedule with bounded and 
periodic restrictions. It also gives conditions for being able to build a periodic schedule, and we prove that those conditions 
are sufficient. Section 3 gives a brief introduction to Maude. Section 4 discusses the encoding of the semantics of ccsl in 
Maude and details the way its environment can be used to compute bounded and periodic schedules. Section 5 considers 
several examples to illustrate the interest of this encoding and the usefulness of our tool. Finally, Section 6 compares this 
work to previous work, including our own, and Section 7 gives some concluding remarks.

2. The clock constraint specification language with periodic filter

2.1. Syntax and semantics of CCSL

ccsl relies on the notion of logical clocks, which are commonly used to express partial orders in distributed systems [10]
or synchronization conditions in synchronous languages [2]. We use the wording clock or logical clock indistinctly in the 
following. While traditional synchronous languages give a syntax to combine signals, infinite sequences of values, and use 
clocks to express when the signals are present (have a value), ccsl discards the values on purpose to focus on relationships 
among clocks.

Definition 1 (Logical clock). A logical clock c is an infinite sequence (a stream) of ticks, (cn)n∈N+ .



Download	English	Version:

https://daneshyari.com/en/article/6875283

Download	Persian	Version:

https://daneshyari.com/article/6875283

Daneshyari.com

https://daneshyari.com/en/article/6875283
https://daneshyari.com/article/6875283
https://daneshyari.com/

